
Bayesian Imitation Reinforcement Learning with a Multiple Number of Mentors

Jean-Noël Rivasseau
Department of Computer Science
University of British Columbia

Vancouver, Canada
jnriva@cs.ubc.ca

Abstract

In this project I explore the possibility of Bayesian Imitation
Reinforcement Learning, with more than one “mentor”. Us-
ing recent techniques for exploration and imitation within a
reinforcement learning framework, I conduct several experi-
ments. They involve one learning agent, trying to explore its
environment and derive an optimal policy given known ob-
jectives, and a number of other agents called mentors, who
already have full knowledge of their actions results and a
fixed optimal policy for their respective goals. The observa-
tion of other agents allows the new agent to improve its own
Bayesian exploration technique.

Introduction
The problem of interaction between an agent and a given
environment is at the heart of artificial intelligence. At the
beginning of its lifetime, an agent can have high uncertainty
about the result of its actions in a totally unknown and un-
explored environment, in terms of transitions from one state
to another; or even about its own goals (he may not know
with certainty which states will result in positive rewards).
How should he then start acting? The reinforcement learning
paradigm addresses this issue, and provides a framework in
order to allow the agent to learn, through various ways, what
are its best actions in a given state. Once he has accumulated
sufficient beliefs about its surrounding world, the agent can
start to follow a policy, which will eventually allow him to
earn rewards (reach its goals). Two central issues with rein-
forcement learning are the optimality of the derived policy,
and also the rate of convergence to that policy, which can be
seen as the speed with which he explores and exploits the
new available information.

The generality and power of the reinforcement learning
model has given birth to a considerable amount of work. If
the dynamics of the underlying model are known, the prob-
lem becomes simpler and a number of techniques, based
on dynamic programming, have been developed to derive
an optimal policy for a given certain model. The most
used is probably value iteration (Bellman 1957), which com-
putes what is commonly called the q-value of every state in
the model. This value represents the (discounted) rewards
gained by the agent if he starts in that state and follow the
theoretically optimal policy from now on. Once these values
are known, the agent’s choice is trivial: he should pick up the

action leading to the highest q-valued state. An alternative to
value iteration is policy iteration, which updates the policy
and does not deal with the q-values. Improvements and the-
oretical results regarding both of these methods are available
in the literature; see for example (Puterman & Shin 1978).

However, solving a known model is, arguably, only the
easiest part of the more general reinforcement learning prob-
lem. If the agent has uncertainty about the underlying
model, which is the main case in reinforcement learning,
he must interact with its environment in order to get pre-
cious information about the dynamics of its actions, which
will in turn reduce its uncertainty and allow him (by mean
of the previously described methods) to compute an optimal
policy. This brings us to the central issue of “exploitation
versus exploration”. Obviously, exploration is costly (time-
consuming) and may even be dangerous as it may lead to
negative rewards. Thus, learning quickly (with fewer explo-
ration steps) and efficiently is a problem that has been deeply
studied. Several popular techniques are currently available,
either model-free methods where the agent doesn’t explic-
itly learns a model, such as Q-learning, or model-based ones
such as prioritized sweeping (Moore & Atkeson 1993) . In
the later ones we try to learn the dynamics of our model be-
fore using it to derive a policy.

A recent work (Dearden, Friedman, & Andre 1999)
presents an approach to model based reinforcement learning
using a Bayesian framework. The agent essentially main-
tains a distribution of probabilities of the various possible
models, updating that distribution as he acquires more infor-
mation about its environment. Sampling methods are used to
compute appropriate q-values from our probability distribu-
tion, and we use those q-values to select actions as usual.
This Bayesian approach to reinforcement learning explo-
ration compares well to other previous model based meth-
ods, and has certain specific advantages: there is no required
parameter tuning, for example.

Building on this work, Price and Boutilier (Price &
Boutilier 2003) have added Bayesian imitation to this frame-
work in a multi-agent setting. In such a setting, agents are
assumed to be somehow similar, not necessarily in their ob-
jectives, but in the results of their actions (state transitions
probabilities are assumed to be the same for everyone). An
agent cannot observe directly the actions chosen by others,
but get to observe their states. These assumptions are very



realistic, and can even be used to model a competitive envi-
ronment when agents would not freely disclose their actions
to others, since all that is observed is the outward conse-
quences of these actions. In that setting, agents using in-
formation made available by their mentor’s behavior learn
quicker. It should be noted that this “imitation” is not neces-
sarily about explicitly duplicating the policy of other agents
(since they may have different and even opposite goals). It
is more about exploiting the additional available informa-
tion in order to make better posterior updates for the agent’s
distribution over possible models.

This project will focus on understanding the framework
used by (Price & Boutilier 2003), which builds considerably
on previous complex work. That framework will be used to
build an experiment with a variable number of agents. One
will be considered the “newcomer”, whereas all the other
ones will follow previously defined policies optimized for
their respective different goals. (Price & Boutilier 2003)
only considered the case of two agents (a learner and a men-
tor), but it is straightforward to deal with multiple mentors.
Since it has already been shown that imitation can lead to a
performance increase, the new hypothesis that we will test
is the following: “Can the use of more than one mentor can
further increase the benefit of Bayesian Imitation, in terms
of quicker exploration ?”. In other terms, are multiple men-
tors useful or not?

Background
This section will introduce the framework and notations
used in this project. I adopted the same general notations as
in (Price & Boutilier 2003) and (Dearden, Friedman, & An-
dre 1999), and the reader is referred to these two papers for
all the details of the described model. For explanations of the
basic concepts behind Markov Decision Processes (MDP),
see (Kaelbling, Littman, & Moore 1996).

I consider an MDP 〈S,A0, R0, D〉, where S is the state
set, A0 the action set, R0 the reward function, and D the
dynamics. Ds,a thus refers to the transition probability dis-
tribution for reaching various states, after the agent selected
action a in state s. It is assumed that the agent always knows
the rewards function R0 : S → R. Its only uncertainty is
about the dynamics D of the MDP, so from now on when
I will talk about the probability distribution over possible
MDP models I will refer to the distribution over dynamics
P (D). The agent tries to learn the true dynamics of this
MDP.

The main computational task in our framework and al-
gorithm is to update our beliefs, the probability distribution
P (D), with the results obtained from a new data point. Such
a data point consists in an action and the observed transition
from the previous state, so we will represent it as 〈s, a, s′〉.
For the update, we need a prior for P (D); (Dearden, Fried-
man, & Andre 1999) choose to place a prior satisfying pa-
rameter independence. This means that P can be written as
a product over all local densities P (Ds,a); these local densi-
ties specify the transition distribution from state s and action
a. We then place Dirichlet priors1 over these local densities

1A Dirichlet distribution is a probability distribution, which is

functions; so in the end we only need one parameter for ev-
ery P (Ds,a), namely, a Dirichlet vector n

s,a which has a
length equal to the number of states. The ns,a,s′

represent
the actual Dirichlet parameters 2 for each of the possible suc-
cessor states s′.

It can be shown that after an update, if the prior satisfies
parameter independence, the posterior also satisfies param-
eter independence. What’s even better, with Dirichlet priors
the posteriors are still given by a Dirichlet distribution. All
that is needed in order to perform an update is to update the
Dirichlet parameters: if we have the data vector c

s,a where
cs,a,s′

is the number of times we observed transition from s
to s′ with action a, with a prior of n

s,a our posterior is just
n

s,a + c
s,a. This is sufficient to improve the agent’s belief

about its environment.
Our assumptions about the other agents is that they share

the exact same MDP, except for the reward function that can
be different (thus allowing different goals for every agent).
The states, actions available, and dynamics (probability tran-
sitions) are identical between all the agents. In fact, the as-
sumption about the actions can be relaxed a little bit, (Price
& Boutilier 2003) only assumes that for every action taken
by the mentor, there is one action available to the newcomer
that is equivalent (in terms of transition distribution).

Imitation with Multiple Mentors
So where does the observation of other agents (mentors)
play a role? The advantage brought by Bayesian Imitation is
a better update of the Dirichlet parameters, resulting in the
end in a “quicker exploration” (in fact a quicker reduction
of the uncertainty surrounding the MDP dynamics). Instead
of updating the Dirichlet parameters with only the agent’s
new data point, we also take into account the data points
generated by the other agents. If we could observe directly
the mentor’s actions, we would just observe a new data point
exactly as we observe a new data point for the agent itself,
in the form 〈s, a, s′〉. Then we would just treat the mentor
just as another chance for us to perform a “free exploration
action” (free in terms of time, not of computational require-
ments), and we would update the Dirichlet parameters with
the sum of our counts and the mentor’s counts.

However, since we don’t observe the actions of the men-
tors but only their states, things are not that simple. There
are mainly two ways to proceed here. We can try to learn the
actions the mentors are taking (which is hard), and use this
to update our Dirichlet parameters. So we will be in some
way trying to learn the Q-values for the agents. Or we can
also not care about the mentor’s exact actions and only ob-
serve their “moves”. Thus we obtain the mentors’ V values
and then use them somehow when we compute our own V
values. In this experiment, we chose the first approach (the
one also taken by (Price & Boutilier 2003)), which is more

a generalization of the Beta distribution to n random variables in-
stead of 2.

2As a Beta distribution has two parameters, a Dirichlet distribu-
tion has n parameters. It is assumed that the reader is already famil-
iar with Dirichlet distributions; if needed, see for example (Evans,
Hastings, & Peacock 2000) for a description of this distribution.



complex but allows everything to stay Bayesian. It also al-
lows us to gain information by observing the mentors even
if their policy will never hit a reward (or penalty). If we only
used V-values, it is not clear (although it would have to be
investigated) we would gain something by observing men-
tors that never encounter rewards, since their V-values are
always 0 for each of their states.

So the newcomer keeps a belief about the mentor’s policy
(which action it is likely to select in every state), and also
updates it as it learns more about the mentor’s transitions.
How to update this belief is crucial; intuitively, it is clear the
newcomer can only guess which action the mentor selected
in a given state based on its own information (in other terms,
we can try to guess which actions the mentors took only once
we have been ourselves in the same state and “explored”
the different actions available at this state). The assumption
of the same action space for the newcomer and mentors is
also obviously needed here. The details of a possible correct
update rule are given in (Price & Boutilier 2003).

Once we have a belief over the mentor’s policy, we can
update, for each observation of our own moves and of the
mentor’s moves, our Dirichlet parameters. It is important
to understand that these Dirichlet parameters govern every-
thing in a Bayesian framework. They will be used to sample
MDPs, which will in turn be used to compute the Q-values
for the newcomer as will be explained in the next section.

For the case of two agents (one learning agent and one
mentor), if we denote Pr(πs

m) our belief distribution about
the mentor’s action in state s, and Ha, Hm the history (se-
quence of observed transitions) of respectively the agent and
the mentor, we obtain the following complete posterior up-
date rule :

P (Ds,a|Ha, Hm)
= Pr(πs

m = a|Ha, Hm)P (Ds,a;ns,a + c
s,a
a + c

s,a
m )

+Pr(πs
m 6= a|Ha, Hm)P (Ds,a;ns,a + c

s,a
a )

This last equation considers two cases. First, the case
where we believe the action taken by the mentor is the same
as the one we are currently considering (a); then we can
update the Dirichlet with our counts c

s,a
a but also with the

mentor’s counts c
s,a
m . The second case is when the action

taken by the mentor is different from the one just consid-
ered; then we update the Dirichlet by adding only our counts
c

s,a
a . The complete update is just the sum of these two cases,

weighted by our belief about the mentor’s policy. This gives
us the correct expectation.

In our experiment, we generalize to the case of k mentors
in addition to the main learning agent. The update equation
we get in this case would then be, with the same notations:

P (Ds,a|Ha, Hm1
..Hmk

)

=
∑

a1
..

∑
ak

∏k

i=1
Pr(πs

mi
= ai|Ha, Hmi

)

·P (Ds,a;ns,a + c
s,a
a +

∑k

i=1
δa,ai

c
s,a
mi

)

where δi,j is the Kronecker symbol3. In this equation we
sum over all possible actions a1..ak for each agent; but ac-
tually we have to consider, like in the one-mentor situation,

3The Kronecker symbol, δi,j , is defined such that δi,i = 1 and
δi,j = 0 for i 6= j

• Initialize our beliefs about the environment and the
mentors policies, by initializing all Dirichlet vectors to
a constant vector

• Loop for the desired number of steps

– Sample k MDPs from our current belief distribution.
That amounts to sampling the transition probabili-
ties from our current Dirichlet distribution for each
state 〈s, a, s′〉;

– Use Value-iteration to solve each MDP;

– Obtain an expected value for the states Q-values, by
taking the average of the Q-values for the k sampled
MDPs;

– Use Value of Information techniques to compute
what’s the best action to take;

– Move the agent and all mentors according to the en-
vironment true dynamics;

– Observe the transitions that have just occurred, and
update our belief of the MDP distribution by updat-
ing the Dirichlet parameters;

– Update our belief of the mentors policy.

• Print results obtained

Table 1: Structure of the Algorithm

only the two cases when the action is or isn’t equal to the
currently considered action a. Note that these two cases are
embedded in this last equation (with the help of the Kro-
necker symbol); behind the more complex notation, this sec-
ond equation is exactly similar to the first one. In fact, to add
multiple mentors, we simply need to perform a loop over the
update rule for a single tutor.

Intuitively, more agents seems always better, whatever
their goals may be, since it can lead to better updates of
the Dirichlet parameters. However, whatever the number of
agents, several problems arise when dealing with imitation,
as we will see in the results of the experiments. One of the
main obstacle is due to the fact that the main agent needs
to have a fairly correct belief of a mentor mi policy πmi

in
order to correctly exploit the mentor’s transitions, and as we
already pointed out such a belief is hard to obtain in a short
amount of exploration time.

Algorithm
We will now proceed to a general high level description of
the Bayesian learning algorithm. The structure of this algo-
rithm (used for our experiment) is described in Table 1.



In fact, this algorithm uses a lot of different techniques
from the Reinforcement-Learning field, and each step will
now be briefly explained in more details. First, one needs to
know how to sample from a Dirichlet distribution; this prob-
lem is hopefully tractable and can be solved by sampling
from a Gamma distribution; see (Ripley 1987) for such pro-
cedures. Then, Q-Values of each state for every sample must
be computed. We use Value-Iteration, a fairly standard algo-
rithm for solving an known MDP (that is, a MDP which dy-
namics are known without uncertainty). Theoretical results
guarantee convergence of this value-iteration algorithm; see
(Kaelbling, Littman, & Moore 1996).

It should be noted that all this sampling and Value-
Iteration are heavy computational tasks. Thus it is naive
to actually sample k MDPs at each step, and solve each
of them full, because in fact our distribution over possi-
ble MDPs will not change much with only one update (one
step). Several more advanced methods are available to re-
duce computations; Importance Sampling, for example, tries
to keep the same MDPs from one step to another, just updat-
ing “weights” on this MDPs to reflect the updates in the dis-
tribution. We re-sample new MDPs only when the weights
go too small and go below a certain threshold. Importance
Sampling for Bayesian Exploration is described in (Dear-
den, Friedman, & Andre 1999).

Once each sample is “solved”, it is easy to compute an ex-
pected Q-value over all these solved samples. Since we are
dealing with an exploration problem, we need to take a de-
cision for our action based not only on our expected reward
but also on what new information (which may potentially
increase our reward) we get by exploring an unknown state.
For this we adopt the Value Of Information exploration tech-
nique describe by Dearden et al. The general idea is to define
an incentive for exploring states based on the gain in rewards
if we knew the true value (perfect information) of that state.
It seems to me that when dealing with Bayesian Imitation,
another concept could be introduced and superposed to this
one: the value of information should also reflect the gain in
rewards based in a better knowledge of the mentor’s policy,
which would allow less uncertain use of the mentor’s moves.
Thus the agent should be encouraged to explore states which
will result in a diminution of the uncertainty surrounding the
mentor’s policy.

Finally, the updates of our belief of the MDP distribution,
as well as our belief of the mentors policies, were detailed
in the previous sections, and mainly consist in Dirichlet up-
dates.

Experimental Results
Setting
All of this experiments were ran using the same background
setting. Agents move along a “maze” consisting of 10 by 10
squares. The possible states for the agents are just equivalent
to their position in the maze, which can be represented as co-
ordinates (x,y). In this maze, agents can take four actions at
any given position: North, South, West, or East. Each of
this action will take them to the corresponding square with
a probability of 0.9 (or 0 if the square is indeed a wall); with

a probability of 0.1 they will not move (or 1 if it’s a wall).
The “learning agent” initially thinks that the result of every
action can get him to any surrounding square, or the square
itself (so he has at the beginning, for each action, a prior
consisting in uniform probabilities for the 9 possible out-
comes of the action). He has no knowledge of the walls in
the maze, except for the “outer walls” that bound the maze.
These walls (at the edges of the maze) are known by the
agent, and they are accordingly incorporated into its prior
beliefs (for example, an agent at position (0,5) knows that
the results of any of its actions can’t get him to the “forbid-
den” positions (-1,5) or (-1,4).

The agent starts at the position (0;0) and wants to get to
the position (9;9) where he will fetch a reward and be instan-
taneously teleported back to (0;0). The reward is discounted
with a discount factor of 0.9 for each passing step. Note that
changing the discount factor doesn’t have any fundamental
effect on our experiments for the comparisons we aim to
make (exploration with or without a given number of men-
tors). Any mentor will use a fixed policy predefined for a
configuration of the maze. This policy doesn’t necessarily
get him to the reward, as I wanted to see what would happen
if the mentors had different goals.

The learning agent has to learn (for every state) that, for
example, the action labeled “South” will effectively get him
South with a high probability. He also needs to learn where
are the walls (they correspond to states where some actions
don’t have the “expected” result, although the agent doesn’t
know what is the expected result...). Once his beliefs about
the results of its actions are fairly good, he will be able to get
to the reward and his behavior will converge to an optimal
policy.

I ran 3 distinct experiments. Two consider the simplest
possible maze, without any walls. In the first of these two,
mentors actually follow an optimal policy to fetch the re-
ward. In the second, they just move around the maze but
never get to the reward position. The last experiment is done
with a big wall separating the maze in two parts, so the agent
actually has to find the only possible way across. The men-
tors are using an optimal policy in this third experiment.

The setup for these 3 different experiments can be found
in Figures 1, 2 and 3. The bold arrows represent the policy
of the mentors.

S

G

Figure 1: First experiment



S

G

Figure 2: Second experiment. Mentors don’t follow an opti-
mal policy

S

G

Figure 3: Third experiment. This time a wall is present

Results
In Figure 4, 5 and 6, I present the results of the different
experiments as the cumulated rewards obtained in the last
100 steps (sampled at intervals of 50 steps). Other numbers
could be given, such as the number of steps needed to fetch
the first reward, the time needed to converge to the optimal
policy, etc... However these numbers are very sensitive to
the inherent randomness of the experiment; for example, one
can use a quasi-optimal policy but there is always a slight
probability that it will deviate at one step, so it is hard to
really judge when the optimal policy is reached. Display-
ing the cumulative rewards is a very good way to estimate
graphically how the agent is learning.

Analysis of the Results
The first and second experiments (Figure 4 and 5) show
that imitation is not really useful for such a simple setting.
All agents performed more or less identically, and imitation
didn’t allow better exploration. This is without doubt due
to the fact that even if we can observe the transitions of the
mentors, and we imitate them, we still don’t know which
action they effectively choose. Thus in the end, we often
fail when trying to imitate the mentors and it takes time for
us to come back on the “mentor’s tracks”. No real gain is
obtained, compared to the simple Bayesian exploration, by
adding imitation.

It is worth noting, however, that with mentors that follow
an optimal policy, the agent always converge to this particu-
lar policy (this is not shown in the results, but I noticed that).

100 200 300 400 500 600 700 800 900 1000
0

1000

2000

3000

4000

5000

6000

Steps of simulation

C
u

m
u

la
ti
v
e

 r
e

w
a

rd
 i
n

 l
a

s
t 

1
0

0
 s

te
p

s

1 mentor
5 mentors
No mentors

Figure 4: No walls with Optimal Policy

When there are no mentors, the agent obviously converge at
random to one of the many available optimal policy. This
demonstrates the fact that our algorithm is working, even if
we cannot see the difference in performance for the first ex-
periment.

One other important remark is that imitation doesn’t hurt
if the mentors follow a policy that is not an optimal policy
for the agent’s own goals. This is why I included the results
of the second experiment: this experiment shows that even
if the mentors follow a policy not useful for the agent, he
is still able to find - without any penalty in exploration time
- the correct path to reward, and after learning his behavior
does converges to an optimal policy. This illustrates the fact
that within a Bayesian framework, the mentors could have
different goals that the agent, but that doesn’t necessarily
penalize him. He will just ignore the mentors if they don’t
have a useful policy.

The third experiment, more complex, clearly shows the
benefit of imitation. Without any imitation, the agent learns
very slowly. After the 1000 steps of the experiment, it wasn’t
even yet at the optimal policy. On the contrary, with imi-
tation, the “learning agent” was able to overcome the wall
obstacle, and he reached the optimal policy within the time
frame of the experiment. With 5 mentors, the agent learns
even faster, and as shown on Figure 6, is able to fetch high
cumulated rewards much sooner than the agent observing
only a single mentor. Thus it is demonstrated than more
mentors do help, and even if the difference in performance
is not so high between 1 and 5 mentors than between 0 and
1 (which seems perfectly logical), it is still very real.

Intuitively, these results make sense. Within a simple set-
ting, observing which states (positions) are valuable to the
mentors isn’t really useful, since anyway we pretty much
know that already (since we want to get to the reward state,
we value highly the states that are close to it). Following
the mentor’s optimal policy is not better than following any



100 200 300 400 500 600 700 800 900 1000
0

1000

2000

3000

4000

5000

6000

C
u

m
u

la
ti
v
e

 r
e

w
a

rd
 i
n

 l
a

s
t 

1
0

0
 s

te
p

s

Steps of simulation

1 mentor
5 mentors
No mentors

Figure 5: No Walls with Different Policy

other optimal policy, and since the hard task during explo-
ration is, in this case, to learn the correct mapping between
actions and state transitions, imitation doesn’t help much.
However, with walls, the hard task is no more to find a cor-
rect mapping, but on the contrary to find the valuable states
(since the challenge is to get pass the wall: and there is only
one state where we can do that - the “hole” in the wall). So
here observing what the mentors do (they effectively get to
that desirable state) is very helpful... To summarize the re-
sults of my project, I would say that imitation can make a
very real difference when the difficulty is to learn the desir-
ability of the states. If the difficulty is to learn the mapping
of actions to state transitions, imitation has much less ap-
peal.

Conclusion
This project was an investigation of the Bayesian Imita-
tion and Exploration framework for Reinforcement Learn-
ing. The goal was to run several experiments in order to
assess the benefits of imitation, and if more mentors would
help even more. In the experiments I have ran, it turns out
that indeed more mentors is an improvement, but the perfor-
mance gain really varies from setting to setting. In a simple
setting, the benefits of imitation are almost reduced to zero,
due to the fact that the agent has weak beliefs about the men-
tors actions.

Future research on Bayesian Exploration and Imitation
could take many forms. Many more interesting experiments
can still be done; in particular, a simple prolongation of
this project would be to find (for a given setting) the op-
timal number of mentors: the limit after which further in-
creasing the number of mentors doesn’t bring any signif-
icant performance increase. The algorithm could also be
rewritten in order to directly manipulate the V-values of the
mentors as suggested earlier; this wouldn’t be completely
Bayesian anymore but would probably lead to the same re-

100 200 300 400 500 600 700 800 900 1000
0

1000

2000

3000

4000

5000

6000

Steps of simulation

C
u

m
u

la
ti
v
e

 r
e

w
a

rd
 i
n

 l
a

s
t 

1
0

0
 s

te
p

s

1 mentor
5 mentors
No mentors

Figure 6: Wall results

sults. Finally, extending Bayesian Imitation to a different ac-
tion space for the mentor and the agent, suggested by (Price
& Boutilier 2003), is something that remains to be done.

References
Bellman, R. 1957. Dynamic Programming. Pinceton Uni-
versity Press, Princeton, NJ.
Dearden, R.; Friedman, N.; and Andre, D. 1999. Model
based bayesian exploration. In Proceedings of Fifteenth
Conference on Uncertainty in Artificial Intelligence., 150–
159. San Francisco: Morgan Kaufmann.
Evans, M.; Hastings, N.; and Peacock, B. 2000. Statistical
Distributions. New York: John Wiley & Sons.
Kaelbling, L. P.; Littman, M. L.; and Moore, A. P. 1996.
Reinforcement learning: A survey. Journal of Artificial
Intelligence Research 4:237–285.
Moore, A. W., and Atkeson, C. G. 1993. Prioritized sweep-
ing: Reinforcement learning with less data and less time.
Machine Learning 13:103–130.
Price, B., and Boutilier, C. 2003. A bayesian approach to
imitation in reinforcement learning.
Puterman, M., and Shin, M. 1978. Modified policy itera-
tion algorithms for discounted markov decision processes.
Management Science 24:1127–1137.
Ripley, B. D. 1987. Stochastic Simulation. Wiley, NY.


