
From the Jungle to the Garden:

Growing Trees for Markov Chain Monte Carlo
Inference in Undirected Graphical Models

by

Jean-Noël Rivasseau,

M.Sc., Ecole Polytechnique, 2003

A THESIS SUBMITTED IN PARTIAL FULFILMENT OF
THE REQUIREMENTS FOR THE DEGREE OF

Master of Science

in

The Faculty of Graduate Studies

(Computer Science)

The University Of British Columbia

October 2005

c© Jean-Noël Rivasseau, 2005

ii

Abstract

In machine-learning, Markov Chain Monte Carlo (MCMC) strategies such as Gibbs

sampling are important approximate inference techniques. They use a Markov Chain

mechanism to explore and sample the state space of a target distribution. The gener-

ated samples are then used to approximate the target distribution.

MCMC is mathematically guaranteed to converge with enough samples. Yet some

complex graphical models can cause it to converge very slowly to the true distribution

of interest. Improving the quality and efficiency of MCMC methods is an active topic

of research in the probabilistic graphical models field. One possible method is to

“block” some parts of the graph together, sampling groups of variables instead of

single variables.

In this thesis, we concentrate on a particular blocking scheme known as tree sam-

pling. Tree sampling operates on groups of trees, and as such requires that the graph

be partitioned in a special way prior to inference. We present new algorithms to

find tree partitions on arbitrary graphs. This allows tree sampling to be used on any

undirected probabilistic graphical model.

iii

Contents

Abstract . ii

Contents . iii

List of Tables . vi

List of Figures . vii

Acknowledgements . ix

1 Introduction . 1

2 Probability Propagation: Exact Inference 3

2.1 Probabilistic Models . 3

2.1.1 Directed Acyclic Graphs . 4

2.1.2 Pairwise Markov Random Fields 5

2.1.3 Factor Graphs . 6

2.1.4 Inference on graphical models . 7

2.2 The Belief Propagation Algorithm . 8

2.2.1 Belief Propagation for Factor Graphs 9

2.2.1.1 Message propagation expressions 10

2.2.1.2 Incorporating evidence 10

2.2.1.3 Obtaining the marginals of every random variable . . . 10

2.2.1.4 Factor Graph BP pseudo-code 11

2.2.2 Belief Propagation for Pairwise Markov Random Fields 11

2.3 Loopy Belief Propagation (LBP) . 13

Contents iv

3 Monte Carlo Methods . 15

3.1 Introducing Monte Carlo simulation . 15

3.2 Markov Chain Monte Carlo methods . 16

3.2.1 The Gibbs sampler . 16

4 Combining Monte Carlo and Belief Propagation: MCMC Tree Sam-

pling . 19

4.1 Improving MCMC algorithms . 19

4.1.1 From single sampling to group sampling 19

4.1.2 A special case of group sampling: tree sampling 21

4.2 Sampling from Trees: Forward Filtering Backward Sampling 21

4.2.1 Pairwise MRF Trees . 21

4.2.2 Factor Trees . 23

4.3 MCMC Tree Sampling . 26

4.3.1 Tree partitions for Pairwise Markov Random Fields 28

4.3.2 Choosing a tree partition for Factor Graphs 31

4.4 MCMC Tree Sampling Implementation 32

4.4.1 Rao-Blackwellization . 33

4.4.2 Pseudo-code and remarks . 34

5 Finding MCMC Tree Partitions . 36

5.1 Introductory remarks . 36

5.1.1 Definition of the problem . 36

5.1.2 Search heuristics to minimize the number of trees in an MCMC

tree partition . 36

5.2 The pairwise case . 37

5.2.1 Essential choices . 37

5.2.2 General overview . 38

5.2.3 Simplifying the initial graph . 39

5.2.4 Exploring and coloring the graph 40

Contents v

5.2.5 Choosing an ordering on the priority queue 42

5.2.6 A useful improvement . 45

5.2.7 Full Pseudo Code for our partitioning implementation 48

5.3 The general case . 48

5.3.1 Changes in the factor graph case 50

5.3.2 A Factor Graph partitioning example 51

6 Experimental Results . 54

6.1 Experimental Setup . 54

6.2 Inference on Pairwise Graphs . 55

6.2.1 Fully Connected Graph . 55

6.2.2 Square Lattice MRF . 57

6.2.3 Random Graph . 57

6.2.4 Remarks . 57

6.3 Inference on Factor Graphs . 60

6.3.1 First QMR graph: low leak . 61

6.3.2 Second QMR graph: medium leak 61

6.3.3 Third QMR graph: high leak . 61

6.3.4 Remarks . 61

6.4 Tree Partitioning Algorithm Results . 65

6.4.1 Square Lattices MRF . 65

6.4.2 Pairwise Random Graphs . 66

6.4.3 Random Factor Graphs . 67

7 Conclusion . 68

Bibliography . 69

vi

List of Tables

6.1 Partitioning Algorithm applied to pairwise square-lattices MRF 65

6.2 Partitioning Algorithm applied to pairwise random graphs 66

6.3 Partitioning Algorithm applied to random factor graphs 67

vii

List of Figures

1.1 Various tree partitions . 2

2.1 A Directed Acyclic Graph . 4

2.2 A Pairwise Markov Random Field . 5

2.3 A square lattice Markov Random Field 6

2.4 A Factor Graph . 7

2.5 The flow of belief messages on an example tree 9

2.6 Pseudo-code for Belief Propagation . 12

2.7 Pseudo-code for Loopy Belief Propagation 13

3.1 Pseudo-code for the Gibbs sampler . 18

4.1 A problematic distribution for MCMC approximation 20

4.2 Pseudo-code for Forward-Filtering Backward-Sampling, pairwise case . . 23

4.3 A Factor Tree . 24

4.4 Sampling from a clique in a Factor Tree 25

4.5 Pseudo-code for Forward-Filtering Backward-Sampling, factor tree case 27

4.6 A MCMC Tree Partition . 29

4.7 Two different MCMC tree partitions of a square lattice MRF 30

4.8 Sampling from one of the trees of a MCMC tree partition 30

4.9 An illegitimate MCMC tree partition for a Factor Graph 32

4.10 A corrected Factor Graph MCMC tree partition 33

4.11 Pseudo-code for the MCMC Tree Sampler algorithm 35

5.1 Pseudo-code outlining the structure of our partitioning algorithm 38

List of Figures viii

5.2 Simplification of a graph prior to partitioning 39

5.3 Coloring a graph for partitioning, part I 41

5.4 Coloring a graph for partitioning, part II 42

5.5 A comparison function defining an ordering on the priority queue 43

5.6 Partition of a graph, using an ordering on the priority queue 44

5.7 Suboptimal partitioning of a graph due to a trapped vertex 46

5.8 Another example of trapped vertices . 47

5.9 Pseudo-code of the partitioning algorithm 49

5.10 Pseudo-code for the auxiliary functions of the partitioning algorithm . . 50

5.11 Partitioning a Factor Graph, part I . 52

5.12 Partitioning a Factor Graph, part II . 52

5.13 The final partition of a Factor Graph . 53

6.1 Inference algorithms comparison: Fully connected pairwise graph 56

6.2 Inference algorithms comparison: Square-lattice MRF graph 58

6.3 Inference algorithms comparison: Random pairwise graph 59

6.4 Inference algorithms comparison: QMR graph with low leak 62

6.5 Inference algorithms comparison: QMR graph with medium leak 63

6.6 Inference algorithms comparison: QMR graph with high leak 64

ix

Acknowledgements

I would like to thank all the people who helped me, in different ways, throughout my

degree.

Academically, I am first and foremost grateful to my supervisor, Nando de Freitas.

It is thanks to his teaching and support that I learnt probabilistic machine-learning.

And it is thanks to its suggestions and advices that this thesis - hopefully - contains

interesting results! Secondly, I would like to thank the whole Computer Science De-

partment at UBC, and especially Firas Hamze for interesting discussions and for the

initial ideas that form the core of this thesis.

I am also equally grateful to my whole family, especially my wife Marina, my

brother Christian, my sister Marie, my parents Marie-France and Vincent, and my

parents in-law Vera and Sergei. Their love and affection was absolutely essential for

this thesis to see the light of the day, wether they were nearby or far away...

Finally, I would like to thank all my friends back in France. While I was away for

two years, completing my Msc. degree in Vancouver, I have not forgotten them nor

the times we had together. I sure hope to see you all again!

1

Chapter 1

Introduction

This thesis is about approximate inference in general discrete probabilistic models.

The methods presented here do however extend to Gaussian models. They are appli-

cable to general probabilistic graphical models such as directed acyclic graphs (DAGs,

also known as Bayesian networks), conditional random fields, Markov random fields

(MRFs) and factor graphs.

Performing inference on a large network (more than a thousand nodes) with a rea-

sonable variable size (more than a hundred values) remains a huge computational task.

Since the exact solution is impossible to compute, people generally turn to approx-

imations. The Gibbs sampler is one of the most widely used approximate inference

methods in this domain. However, correlation between variables in the probabilistic

model can lead to a poor convergence rate for a single-site MCMC sampling technique.

Various attempts at improving the robustness and efficiency of MCMC methods have

thus been developed.

This thesis extends the tree sampling method, proposed in [6] for square-lattices

Markov Random Fields, to arbitrary pairwise graphs and factor graphs. We also

introduce new automatic partition schemes, obtaining results similar to those presented

in Figure 1.1.

The tree sampler combines elements of Monte Carlo simulation as well as belief

propagation. It requires that the graph be partitioned in trees first. The tree par-

titions of Figure 1.1 allow us to perform exact inference on each tree. These exact

computations form the basis of a powerful blocked Gibbs sampler.

Chapter 1. Introduction 2

Figure 1.1: Several tree partitions for different types of graphs. On the left, a square-

lattice MRF is partitioned into two trees, as in [6]. The middle figure is an example

of a tree partition on an arbitrary pairwise graph, while the right figure corresponds

to a factor graph.

This thesis is organized in the following manner. Chapters 2 and 3 are back-

ground chapters about probabilistic graphical models; in particular belief propagation

(Chapter 2) and Monte Carlo methods (Chapter 3). They introduce all the necessary

background material necessary for understanding the MCMC Tree Sampling algorithm

and framework in Chapter 4.

From there we can describe in detail our partitioning algorithm, to which we devote

entirely Chapter 5. Chapter 6 presents our experimental results.

All mathematical notation in this thesis is standard. We will designate a random

variable with a bold letter xi, while the use of xi will indicate one of its realizations.

If a variable is conditioned on (observed), we will refer to its value using xi. We also

adopt the notation xi:j = {xi,xi+1, . . . ,xj−1,xj}. The notation xi:j\k excludes the

variable xk from the set. Finally, in a graph, we denote by N (i) the neighbors of node

i, and by P(i) its parents.

3

Chapter 2

Probability Propagation: Exact

Inference

Probabilistic inference is at the heart of many scientific problems, including medi-

cal diagnosis, computer vision, image reconstruction and so on. In this chapter, we

introduce probabilistic graphical models, which are a general framework for solving in-

ference problems. We present the belief propagation algorithm, an instance of dynamic

programming providing a solution to the exact inference problem.

2.1 Probabilistic Models

This section is a short introduction to probabilistic models. For an exhaustive back-

ground on probabilistic graphical models, see chapter 2 of Jordan’s book [12], or

Yedidia et al. [22].

A probabilistic model contains a set X of random variables x1:n. The set of possible

values, for each variable, can be finite or not. Usually, some of these random variables

will be observed, which means that their value is fixed and known, while others remain

hidden (unknown).

We describe entirely a probabilistic model by specifying its joint probability distri-

bution, which is a probability mass function p(x1:n) defined on the RVs. Using this

distribution, one can answer any question about the model. We can, for instance,

determine if a variable is independent of a subset of RVs, or compute conditional

probabilities.

Chapter 2. Probability Propagation: Exact Inference 4

However, manipulating the joint distribution in an unfactorized representation is

very costly. The graphical model framework proves to be an invaluable tool for solv-

ing multivariate statistical problems. Probabilistic graphical models are the result of a

marriage between probabilistic modeling and graph theory. They allow us to express

joint probability distributions in a factorized way, exploiting directly relationships be-

tween RVs.

On the following paragraphs, we will describe three graphical model representa-

tions: directed acyclic graphs [9], pairwise Markov random fields [14], and factor graphs

[13]. Each of these models factorizes the joint distribution in a different way.

In fact, we can convert any of these three representations into another one. Details

on the conversion process can be found in [22]. Since it requires the introduction of

additional “artificial” random variables, it is better to represent a probabilistic model

in its simplest form.

2.1.1 Directed Acyclic Graphs

X 1

X 2

X 4

X 3 X 5

Figure 2.1: A directed acyclic graph with 5 random variables. x5 has 3 parents:

P(x5) = {x2,x3,x4}. x1 is the parent of x3 and x4.

DAGs are probably the most popular type of graphical model. Each node in a

DAG is associated with a single random variable. Each edge in the graph is directed,

Chapter 2. Probability Propagation: Exact Inference 5

defining a parent node (by convention, the source of the edge) and a child node (the

target of the edge).

The joint distribution of a DAG G(V, E) factorizes as follows:

p(X) =
∏

i∈V

p(xi|P(xi)) (2.1)

where the p(xi|P(xi)) represent directly conditional probabilities. They sum to one

with respect to xi.

2.1.2 Pairwise Markov Random Fields

Pairwise Markov Random Fields belong to the group of undirected graphical models.

Each node is again associated with a RV. We embed potentials in each variable node

(noted as φ) and in the edges of the graph (noted as ψ). These potentials are arbitrary

positive functions of one (φ) or two (ψ) RVs.

Figure 2.2: An example Pairwise Markov Random Field, with 6 random variables.

The joint probability equation of a pairwise MRF is written in the following form

for a graph G(V, E) with nodes V and edges E :

p(X) =
1

Z

∏

i∈V

φ(xi)
∏

(i,j)∈E

ψ(xi,xj) (2.2)

Chapter 2. Probability Propagation: Exact Inference 6

In computer vision, RVs on a MRF are often linked with four neighbors, forming

a square lattice. There is also an additional observed node attached to every variable,

as in Figure 2.3.

Figure 2.3: A square lattice pairwise Markov Random Field. The shaded circles

correspond to observations and the white circles to the true “hidden” variables.

2.1.3 Factor Graphs

Factor graphs aim at capturing factorizations, rather than conditional probabilities like

DAGs do. In a factor graph, vertices no longer correspond only to random variables.

They also represent potentials. Each potential is associated to a clique, which is a

subset of RVs1. We denote by C = {C1, C2, . . . , Ck} the set of all cliques. The set

of all corresponding potentials P = {ψ1, ψ2, . . . , ψk} form the parameterization of the

joint probability.

p(X) =
1

Z

∏

i∈V

φ(xi)
∏

i∈P

ψi(xCi
) (2.3)

Equation (2.3) has effectively achieved factorization of the original joint probability

distribution. Potentials represent how the different variables depend on each other.

Each potential is an arbitrary positive function of the RVs of the corresponding clique.

For a discrete problem with variables taking u different values, the size of a potential

table associated with a clique of size s is us. For practical values of u, we are limited

to cliques of size 10 at most.

1We also embed an internal potential φ in each RV, as in MRFs.

Chapter 2. Probability Propagation: Exact Inference 7

Graphically, a factor graph of n RVs and k potentials is represented by a graph

of n + k nodes. There is an edge between every potential node and the variables on

which it depends. The convention is to represent potentials with square nodes and the

random variables with round nodes, as illustrated in Figure 2.4.

Figure 2.4: An example Factor Graph, with 6 random variables and 3 potentials. We

have here C = {{x1,x2,x3}, {x2,x3}, {x3,x4,x5,x6}}.

2.1.4 Inference on graphical models

Given two disjoint subsetsXA andXB ofX, the general probabilistic inference problem

is to compute the distribution p(XA|XB). XB represents the subset of conditioned

variables. Often, we will be interested in the marginals of every RV in X. We would

then compute p(xi|XB) for i ∈ V.

To compute these quantities, we must start from the expression of the joint prob-

ability p(X) described in Equations (2.1), (2.2) and (2.3). We can obtain p(xi|XB) by

summing in p(X) over all configurations of the non conditioned variables.

p(xi|XB) ∝
∑

x1:n\ B ∪ i

P (x1:n) (2.4)

Chapter 2. Probability Propagation: Exact Inference 8

This naive way of computing marginals is impossible in practice, since it is clearly

exponential in the number of variables. However, many summations are repeated. We

should “reuse” intermediary summations and not compute them again. This idea of

reusing intermediary factors leads to a general efficient solution to the exact inference

problem for discrete tree graphs: the sum-product or belief propagation (BP) algorithm.

2.2 The Belief Propagation Algorithm

The belief propagation algorithm is well studied in the literature, descriptions being

available in [19] or [22].

Belief propagation allows us to get the marginals of all variables, with a compu-

tational time only linear in the number of variables. Each node must send a carefully

computed message to each of its neighbors, while respecting the following message-

passing protocol:

A node can only send a message to a neighboring node when it has received mes-

sages from all its other neighbors.

In order for this to be possible, the graph must not contain any loops. BP only

works on trees. This is its main limitation. We will investigate in Section 2.3, and

later in Chapter 4, ways in which BP may still be used with arbitrary graphs.

On a tree, BP works as a “two-phase” algorithm. In the first phase, the messages

flow from the leaves to the root. At the end of this phase, the root node has received

all the messages from its neighbors. We could get the root node marginals at this

point. But the real strength of BP is that we can get the marginals of all nodes just

by doubling that amount of work. On the second phase we let the messages return

from the root node to the leaves. Figure 2.5 illustrates this two-phase process.

In practice, we can use a depth-first traversal of the tree, starting from an arbitrary

root, for both phases. In the first phase, each node will send a message to its parent

when the depth-first traversal is finished with that node. In the second phase, the

Chapter 2. Probability Propagation: Exact Inference 9

Figure 2.5: The flow of Belief-Propagation messages on an example tree. The directed

arrows represent messages. The flow direction is inverted between the two phases.

parent of a discovered node (via depth-first traversal) will send to this discovered node

(its child).

2.2.1 Belief Propagation for Factor Graphs

We will now look at the belief propagation algorithm implementation in the case of a

discrete factor graph, also presented in [13]. We recall that a factor graph contains two

different types of nodes, corresponding to random variables and to potentials. So we

have two kinds of messages, the ones flowing from potentials to variables, µi→j (i ∈ P,

j ∈ X), and the ones flowing from variables to potentials, νi→j (i ∈ X, j ∈ P).

Chapter 2. Probability Propagation: Exact Inference 10

2.2.1.1 Message propagation expressions

The expressions for our messages are given by the following pair of equations (see

chapter 4 of [12]):

From Variable to Potential: νi→j(xi) = φ(xi)
∏

k∈N (i)\j

µk→i(xi) (2.5)

From Potential to Variable: µi→j(xj) =
∑

xN (i)\j

ψ(xN (i))
∏

k∈N (i)\j

νk→i(xk) (2.6)

In terms of complexity, the µi→j messages take most of the computational time.

Assuming all variables can take the same number of valuesm, we carry outm|N (i)| sums

for potential i. In each of these sums, we have to compute a product of |N (i)|−1 terms.

By comparison, for the νi→j messages, we compute m times a product of |N (i)| − 1

terms.

2.2.1.2 Incorporating evidence

Like in Chapter 4 of [12], we will use “evidence potentials” on the RVs to express

conditioning (or observed variables). If RV xi is conditioned and equal to xi, the

evidence potential will be equal to δ(xi, xi). The final potential φE on RV xi is the

product of the evidence potential and the original potential φ.

If xi is conditioned: φE(xi) = φ(xi)δ(xi, xi) (2.7)

If xi is not conditioned: φE(xi) = φ(xi)

This convenient transformation will be useful later in Chapter 4 for tree sampling.

However, for simplicity, we will not denote explicitly the internal potentials as φE . We

will keep writing them as φ, assuming the previous conversion has already taken place.

2.2.1.3 Obtaining the marginals of every random variable

Once messages have flowed twice (along each direction of the edges of the graph), we

are ready to compute our marginals. We just take the products of all the messages

Chapter 2. Probability Propagation: Exact Inference 11

received at every variable node to obtain the marginals. Thus they are given (not

normalized) by the following equation:

p(xi) ∝
∏

j∈N (i)

µj→i(xi) (2.8)

2.2.1.4 Factor Graph BP pseudo-code

We present the complete pseudo-code of the sum-product algorithm in Figure 2.6. The

implementation shown here uses two depth-first traversal of the tree.

In the initialization step, we need to record the parent of every node (the root will

be its own parent). We usually do that with another depth-first traversal of the tree,

which we combine with the depth-first traversal of phase 1.

In the first phase, we are sending from u to v, while we are sending from v to u in

the second phase. This is of course to reverse the direction of the messages, as shown

in Figure 2.5. Note also that in phase 1, we send a message when a vertex is finished.

In phase 2, we send a message when a vertex is discovered.

2.2.2 Belief Propagation for Pairwise Markov Random Fields

The BP algorithm for Pairwise MRFs is a specialization of the one we just presented

for factor graphs. The only changes appear in the expressions of the messages. Since

every potential is linked to only one or two variables, we can elegantly combine Equa-

tions (2.5) and (2.6) into a single equation. The message mi→j from a variable xi to

another one xj is given by:

mi→j(xj) =
∑

xi

φ(xi)ψ(xi, xj)
∏

k∈N (i)\j

mk→i(xi) (2.9)

The message mi→j is of the same size as xj , and not xi (eg, it has the same number

of values than xj can take). However, the sum and product of messages occur over xi,

the sending variable.

The unnormalized marginals are obtained in the same way as for factor graphs.

Chapter 2. Probability Propagation: Exact Inference 12

Initialization

• Choose an arbitrary root node r for the tree T . For every node in T , record its parent.

Messages propagation step

• Do a depth-first traversal of the tree T , starting from the root node r. During the course

of this traversal, whenever a node u is finished (e.g., when the exploration algorithm has

returned from all its children):

– Obtain u’s parent, v. If u = v (also meaning u = r: we are at the root), do nothing

and go on to the next node. Else:

– If u ∈ V (u is a variable node):

Send the normalized message νu→v from u to v, according to equation (2.5)

– If u ∈ P (u is a potential node):

Send the normalized message µu→v from u to v, according to equation (2.6)

• Do a second depth-first traversal of the tree T , starting from the root node r. During

the course of this traversal, whenever a node u is discovered (e.g., when this node is first

encountered by the exploration algorithm):

– Obtain u’s parent, v. If u = v (also meaning u = r: we are at the root), do nothing

and go on to the next node. Else:

– If v ∈ V (v is a variable node):

Send the normalized message νv→u from v to u, according to equation (2.5)

– If v ∈ P (v is a potential node):

Send the normalized message µv→u from v to u, according to equation (2.6)

Messages equations

νi→j(xi) = φ(xi)
Y

k∈N (i)\j

µk→i(xi) (2.5)

µi→j(xj) =
X

xN(i)\j

ψ(xN (i))
Y

k∈N (i)\j

νk→i(xk) (2.6)

Marginals

• For every variable xi ∈ V,

ep(xi) =
Y

j∈N (i)

µj→i(xi)

• Normalize the marginals:

p(xi) =
ep(xi)P
i

ep(xi)

Figure 2.6: Belief Propagation algorithm for a Factor Graph T (V,P). V represents

the set of random variables, while P is the set of potentials attached to the graph.

Chapter 2. Probability Propagation: Exact Inference 13

We can write, similarly to Equation (2.8):

p(xi) ∝
∏

j∈N (i)

mj→i(xi) (2.10)

2.3 Loopy Belief Propagation (LBP)

The sum-product algorithm can only be carried on a tree. On a graph with loops, it

is impossible to respect the message passing protocol described in section 2.2 while

ensuring that each node sends a message to each of its neighbors. However, Equa-

tions (2.5), (2.6) and (2.9) do not make any reference to a particular graph structure.

By ignoring the message passing protocol, we can propagate the messages defined by

the expressions of Sections 2.2.1.1 and 2.2.2 on arbitrary graphs2.

Initialization

• For every (u, v) ∈ E , set m0
u→v(xv) = 1, for all possible values xv of xv.

Messages propagation For t = 1, . . . , T

• For every u ∈ G:

– For every v ∈ N (u):

m
t
u→v(xv) =

X

xu

ψ(xu, xv)
Y

k∈N (u)\v

m
t−1
k→u(xu)

Marginals

• For every variable xu ∈ V,

ep(xu) =
Y

v∈N (u)

µ
T
v→u(xu)

Figure 2.7: Loopy Belief Propagation algorithm for a pairwise graph G(V, E) and a

predetermined number of steps T .

This process is named loopy belief propagation, and is probably the most popular

2The graphical model must still be discrete or Gaussian, which is the second limitation of Exact

Belief Propagation.

Chapter 2. Probability Propagation: Exact Inference 14

algorithm based on belief propagation. Each of the nodes in the graph will send,

in turn, a message to each of its neighbors. This is repeated for a certain number

of steps. At step t, a node sends a new message mt to its neighbors based on the

messages received at step t− 1. The pseudo-code is presented in Figure 2.7, with the

message equations corresponding to a pairwise MRF.

LBP is an approximate inference algorithm, and there are no theoretical guaran-

tees that it will converge to the true marginals. It can either fail to converge at all

(cycling through different beliefs) or predict beliefs that are inaccurate. In Chapter 6,

we will use LBP as a benchmark to compare the performance of our own inference

algorithm, the tree sampler. LBP effectively fails to converge in some of our experi-

ments. However, the study of the convergence properties of LBP could fill a chapter

on its own. The reader can refer to [17] and [22] for a more in-depth presentation.

15

Chapter 3

Monte Carlo Methods

In the last chapter, we introduced probabilistic models and simple inference algorithms.

In the current chapter, we will discuss a whole new class of algorithms: Monte Carlo

methods. The first published paper on Monte Carlo, written by Metropolis and Ulam

[15], dates back to 1949. The advent of massive cheap computational power has

contributed to their ”rediscovery” in the 1990s.

In essence, Monte Carlo methods work by generating many samples, and then ap-

proximating integrals and large sums by sample sums. The approximation gets better

as more samples are obtained. If we were to generate an infinite number of samples,

in most cases the law of large numbers would guarantee the correct exact results.

The approximation obtained after a reasonable finite amount of time is excellent in

many cases. For many applications, Monte Carlo methods are indeed the only viable

algorithms.

3.1 Introducing Monte Carlo simulation

In Monte Carlo, one draws a large set of N samples {X(i)}i=1...N from a target distri-

bution p(X) defined on a space X . These N samples are used to approximate integrals

of functions over the target distribution (a task usually intractable) by finite sums over

the samples. The following equation illustrates this idea:

∫

X
f(X)p(X)dX ≈

1

N

N∑

i=1

f(X(i)) (3.1)

In particular, we can obtain an approximation of the marginals by counting how

many times every RV has been in a given state.

Chapter 3. Monte Carlo Methods 16

Many different strategies have been developed to explore the state space and gen-

erate the samples. Sampling from a high-dimensional space X is not an easy task. For

example, sampling from Equation (2.3) is impossible for a factor graph of a reasonable

size.

We will review MCMC methods in the next section. This class of Monte Carlo

strategies is of special importance to us, since our own inference algorithm, introduced

in Chapter 4, is based on MCMC.

3.2 Markov Chain Monte Carlo methods

A introduction to MCMC algorithms can be found in Andrieu et al. [1], and a more

extensive treatment in Gilks et. al [7], Robert and Casella [5].

MCMC strategies use a Markov chain mechanism to explore the state space. This

means that a given sample X(i) depends only on the previous sample X(i−1). This

can be useful if we are trying to approximate a distribution where we can easily have

an expression for the probability of a new sample given the last one. We will use this

transition distribution to “jump” from one state (sample) to another, starting from an

arbitrary initial state. If this transition distribution obeys some properties1 (which is

usually the case in practice), we can approximate the original distribution by MCMC

sampling.

The most popular MCMC algorithm is the Metropolis-Hastings (MH) algorithm.

In fact, most other MCMC algorithms are derived from this one, and can be interpreted

as special cases of this basic method. We will not cover the MH algorithm but instead

focus on the Gibbs sampler, an algorithm particularly suited to approximate inference

on probabilistic graphical models.

3.2.1 The Gibbs sampler

If we have a n-dimensional vector X = {x1,x2, . . . ,xn} and the expressions for all the

full conditionals {p(xi|x1, . . . ,xi−1,xi+1, . . . ,xn)}i=1...n, we can sample in turn from

1The transition distribution should obey the Irreducibility and Aperiodicity properties. See [1].

Chapter 3. Monte Carlo Methods 17

each of these conditionals to generate a valid sample for Monte Carlo approximation.

We present a unified framework for running a Gibbs sampler on MRFs and factor

graphs in Figure 3.1. The only differences appear in the equations giving the full

conditional distributions. On a MRF, we obtain them with the following derivations:

p(xi | x1:n\i) =
P (x1:n)∑
xi
P (x1:n)

=

1
Z

∏
j φ(xj)

∏
(j,k)∈E ψ(xj ,xk)∑

xi

1
Z

∏
j φ(xj)

∏
(j,k)∈E ψ(xj ,xk)

(3.2)

On Equation (3.2), the denominator is a sum, constant with respect to xi. The

product on the nominator contains terms depending on xi, and terms independent

of xi. Up to a proportionality constant, we can remove the independent terms, and

write:

MRF Full Conditionals: p(xi | x1:n\i) ∝ φ(xi)
∏

j∈N (i)

ψ(xi,xj) (3.3)

For a factor graph, the derivations are similar and we obtain the following expres-

sion.

Factor Graph Full Conditionals: p(xi | x1:n\i) ∝ φ(xi)
∏

j∈N (i)

ψj(xCj
) (3.4)

Chapter 3. Monte Carlo Methods 18

Initialization

• Initialize X(0) = {x(0)
1 ,x

(0)
2 , . . . ,x

(0)
n } at random.

Gibbs sampling steps

• For t = 1, . . . , T

– Sample x
(t)
1 ∼ p(x1|x

(t−1)
2 , . . . ,x

(t−1)
n) according to Equation (3.5) or (3.6)

...

– Sample x
(t)
i ∼ p(xi|x

(t)
1 , . . . ,x

(t)
i−1,x

(t−1)
i+1 , . . . ,x

(t−1)
n)

...

– Sample x
(t)
n ∼ p(xn|x

(t)
1 , . . . ,x

(t)
n−1)

Expression for the full conditionals

• For the Pairwise MRF case (Equation (3.3)):

p(x
(t)
i = xi|x

(t)
1 , . . . ,x

(t)
i−1,x

(t−1)
i+1 , . . . ,x

(t−1)
n) ∝ φ(xi)

Y

j∈N (i)

ψ(xi, xj) (3.5)

• For the Factor Graph case (Equation (3.4)):

p(x
(t)
i = xi|x

(t)
1 , . . . ,x

(t)
i−1,x

(t−1)
i+1 , . . . ,x

(t−1)
n) ∝ φ(xi)

Y

j∈N (i)

ψj(xi, xCj\xi
) (3.6)

In these equations, xj = x
(t)
j if j < i, or xj = x

(t−1)
j if j < i.

Marginals

• For every variable xi:

ep(xi = xi) =
1

T + 1

TX

t=0

δ(x
(t)
i = xi)

Figure 3.1: The Gibbs sampler algorithm.

And among these I hold trees

dear.

The Silmarillion J.R.R.

Tolkien

Chapter 4

Combining Monte Carlo and

Belief Propagation: MCMC Tree

Sampling

The two previous chapters presented different methods for performing inference on

probabilistic graphical models. Belief propagation allows for exact inference, but its

range of application is limited. On the other hand, Monte Carlo simulation is more

practical, but remains an approximation. It fails to exploit fully the structural prop-

erties of the underlying graphical model.

This chapter will build on Chapters 2 and 3 in order to present a strategy for

combining Monte Carlo simulation and exact belief propagation.

4.1 Improving MCMC algorithms

Basic MCMC algorithms such as the naive Gibbs sampler tend to be slow. They need

lots of samples to converge. Over recent years, several different schemes have been

used to try to improve the convergence of MCMC algorithms.

4.1.1 From single sampling to group sampling

An MCMC sample consists of a full instantiation of the random variables in the model.

For interesting problems, it is impossible to sample directly from the full joint proba-

bility. In the Gibbs sampler, one random variable is sampled at a time. However, this

is problematic when it is difficult to move through the target distribution in “one di-

19

Chapter 4. Combining Monte Carlo and Belief Propagation: MCMC Tree Sampling 20

mension”1. If we start in a low-probability region of the state space, it will take many

samples to get to the interesting region. Figure 4.1 illustrates this idea graphically.

Figure 4.1: A example distribution in two dimensions (X = (x1,x2)), which is hard to

approximate by MCMC methods. If we use Gibbs sampling, we sample x1 conditioned

on x2, and vice versa. The individual sampling steps are drawn by a red line in one

dimension. It is hard to get to the region where most of the distribution weight

(density) is, since we start in a remote region.

Note that if we could sample from the full joint distribution from the start, con-

vergence would be much faster as we would instantly move to the regions of high-

probability. Said otherwise, “moving in two dimensions” is dramatically better in

Figure 4.1. This example demonstrates a weakness of the naive Gibbs sampler, and

motivates the search for better solutions.

1By “moving in one dimension”, we mean that we will sample a variable conditioned on all the

others (Gibbs). Our sampling distribution is thus effectively in one dimension.

Chapter 4. Combining Monte Carlo and Belief Propagation: MCMC Tree Sampling 21

Generally, we would like to exploit the structural properties of the graphical model.

RVs should thus be sampled in blocks2, or groups, to avoid the situation of Figure 4.1.

However, the trade-off is that sampling in groups is harder. The key here is to create

specially crafted groups, where sampling can be done efficiently.

4.1.2 A special case of group sampling: tree sampling

There is an efficient way for sampling on trees called forward-filtering backward-sampling

(FFBS), described by Carter and Kohn in [4] and Wilkinson and Yeung in [21]. This

algorithm allows us to draw independent samples of the whole tree. We describe it in

the next section for MRFs and factor graphs. Sampling on a factor tree is an extension

of the original algorithm. It is one of the main contribution of this thesis.

4.2 Sampling from Trees: Forward Filtering Backward

Sampling

4.2.1 Pairwise MRF Trees

For pairwise graphs, the key to tree sampling is that we can decompose the full prob-

ability p(X) as follows:

p(X) = p(x1,x2, . . . ,xn)

= p(xn|x1, . . . ,xn−1)p(x1, . . . ,xn−1)

Here xn is a leaf in the tree, which means that given its parent P(xn), xn does not

depend on any other variables of the graph. This is clear by looking at Equation (2.2).

Thus we write:

p(X) = p(xn|P(xn)) p(x1, . . . ,xn−1)

2Blocking in MCMC or in other sampling techniques is a well-discussed topic in the machine

learning literature. Various blocking schemes have been developed: see for instance [11] and [21] for

Gibbs blocking, and [3] for cutsets in Bayesian networks.

Chapter 4. Combining Monte Carlo and Belief Propagation: MCMC Tree Sampling 22

If there are other leaves in G, we can repeat this procedure for p(x1, . . . ,xn−1),

yielding:

p(X) = p(x1)
∏

i>1

p(xi|P(xi)) (4.1)

This is in fact the same expression as the factorization for the joint probability

distribution of a DAG in Equation (2.1). On a DAG, by choosing a suitable sampling

ordering, we can directly generate a sample of the whole tree.

On an undirected model, we don’t have expressions for p(x1) and the conditional

probabilities p(xi|P(xi)). We first obtain p(x1) by carrying out the first phase of

Belief-Propagation, the one where the messages flow from the leaves to the root x1.

To compute the conditional probabilities, we write:

p(xi|P(xi)) ∝
∏

j∈N (i)

mj→i(xi) (2.10)

∝ mP(i)→i(xi)
∏

j∈N (i)\P(i)

mj→i(xi)

The messages mj→i, when j is not the parent of i, have already been computed

in the first phase of BP. Now let us compute mj→i with j = P(i). With the ex-

plicit notation for evidence potentials of Equation (2.7), we can derive the following

expression:

mj→i(xi) =
∑

xj

φE(xj)ψ(xi, xj)
∏

k∈N (j)\i

mk→j(xj)

=
∑

xj

φ(xj)δ(xj , xj)ψ(xi, xj)
∏

k∈N (j)\i

mk→j(xj)

= φ(xj)ψ(xi, xj)
∏

k∈N (j)\i

mk→j(xj)

∝ ψ(xi, xj)

This finally gives us the following important equation for the conditional probabil-

ities:

p(xi = xi|P(xi) = P(xi)) ∝ ψ(xi,P(xi))
∏

j∈N (i)\P(i)

mj→i(xi) (4.2)

Chapter 4. Combining Monte Carlo and Belief Propagation: MCMC Tree Sampling 23

With these expressions, we can obtain a sample of the whole tree. We start by

sampling the root x1. We then continue to sample down the tree, from the root to the

leaves, using Equation (4.2). Figure 4.2 describes the complete pseudo-code for FFBS

on a pairwise undirected graph.

Forward-Filtering

• Run the first pass of Belief Propagation for a pairwise graph, sending messages from the

leaves to the root.

Backward Sampling

• Sample from the root node x1, and record the sample as x1. We can obtain its marginals

by computing:

p(x1) ∝
Y

j∈N (x1)

mj→1(x1)

• Do a depth-first traversal of the tree T , starting from the root node x1. During the course

of this traversal, whenever a node xi is encountered :

– Record the RV corresponding to the parent of xi, xj .

– Sample xi from p(xi|xj = xj):

p(xi = xi|xj = xj) ∝ ψ(xi, xj)
Y

k∈N (i)\j

mk→i(xi) (4.2)

– Record the sample as xi.

Figure 4.2: Forward-Filtering Backward-Sampling for a discrete pairwise tree T .

4.2.2 Factor Trees

Equation (4.1) is no longer valid for factor graphs. A leaf in a factor tree can only

correspond to a RV node. This RV no longer depends only on its “parent”, which is

a potential node. It depends on all the neighbors of the parent potential.

We achieve the decomposition of the full probability p(X) through a more complex

independence property. Given the parent x of a clique ψ, the RVs that are further

down the tree, after ψ, are independent of all the other RVs in the graph. Figure 4.3

Chapter 4. Combining Monte Carlo and Belief Propagation: MCMC Tree Sampling 24

illustrates this.

X 1

X 6X 2
X 3

X 4 X 5

(Root)

X 7

X 8

Figure 4.3: An example factor tree. Given the black RV x1, the gray variables x2:5

are conditionally independent of the white variables x6:8. Similarly, given the parent

x3 of clique x3:5, x4 and x5 are independent of all other RVs.

On this example graph, we would write the following derivation:

p(X) = p(x1)p(x2:8|x1)

We now use our independence property. Given x1, the sets x2:5 and x6:8 are

conditionally independent.

p(X) = p(x1)p(x2:5|x1)p(x6:8|x1)

= p(x1)p(x2,x3|x1)p(x4,x5|x1:3)p(x6:8|x1)

We use the independence property one more time for the clique {x3,x4,x5}, and

finally obtain:

p(X) = p(x1)p(x2,x3|x1)p(x4,x5|x3)p(x6:8|x1)

We can write an equation for a general graph G(V,P). We denote P(i) the index

of the parent of clique Ci, and choose x1 as the root of the factor tree. We obtain this

Chapter 4. Combining Monte Carlo and Belief Propagation: MCMC Tree Sampling 25

important decomposition:

p(X) = p(x1)
∏

ψi∈P

p(xCi\P(i)|xP(i)) (4.3)

Once we have factorized the joint distribution as in Equation (4.3), we must de-

compose each clique individually. For a potential ψi ∈ P, let the clique variables

be Ci = {x1,x2, . . . ,xk}, where x1 is the parent. We write the following general

factorization:

p(x2:k|x1) = p(x2|x1)p(x3|x1:2) . . . p(xk−1|x1:k−2)p(xk|x1:k−1) (4.4)

Given Equations (4.3) and (4.4), we can obtain a sample of the whole factor tree.

We start by sampling the root x1, and then sample each clique in turn, moving down

the tree from the root to the leaves.

Figure 4.4: The process of sampling from a clique Ci, with k = 6. The black RVs x1:3

have already been sampled. We sample the gray variable xm (m = 4). The last two

white RVs x5 and x6 remain to be sampled.

To sample from a clique, we must compute the conditional probabilities present in

Equation (4.4) with a run of BP. Let us assume that we are sampling from the example

Chapter 4. Combining Monte Carlo and Belief Propagation: MCMC Tree Sampling 26

of Figure 4.4. We have a clique Ci with k variables, x1:k. We have already sampled

RVs x1:m−1, and the other RVs xm:k have not been sampled yet. We are going to

sample xm and thus compute p(xm|x1:m−1).

p(xm|x1:m−1) ∝
∏

j∈N (m)

µj→m(xm) (2.8)

∝ µi→m(xm)
∏

j∈N (m)\i

µj→m(xm) (4.5)

The messages µj→m, when j 6= i (in Figure 4.4, µr→m and µs→m) correspond to

cliques other than the one we are currently sampling from. They have already been

computed in the first phase of BP. We now compute µi→m:

µi→m(xm) =
∑

xN (i)\m

ψi(x1:k)
∏

l∈N (i)\m

νl→i(xl)

=
∑

xN (i)\m

ψi(x1:k)
∏

l=1:m−1

νl→i(xl)
∏

l=m+1:k

νl→i(xl)

=
∑

xN (i)\m

ψi(x1:k)
∏

l=1:m−1


δ(xl,xl)φ(xl)

∏

j∈N (l)\i

µj→l(xl)




∏

l=m+1:k

νl→i(xl)

Since RVs x1:m−1 have already been sampled, the messages νl→i, l<m use evidence

potentials. The sum in the last equation occurs only over RVs xm+1:k. We finally

obtain:

µi→m(xm) ∝
∑

xm+1:k

ψi(x1:m−1, xm,xm+1:k)
∏

l=m+1:k

νl→i(xl) (4.6)

Figure 4.5 describes the full FFBS pseudo-code for factor trees.

4.3 MCMC Tree Sampling

The idea of MCMC Tree Sampling [6] is to partition the graph G into a set of l

disjoint trees, T = {T1, . . . ,Tl}. Then, if all random variables belonging to T2, . . . ,Tl

are observed, T1 can effectively be considered as an independent tree. We can then

produce a full joint sample of all the variables xi ∈ T1, using the method described in

Chapter 4. Combining Monte Carlo and Belief Propagation: MCMC Tree Sampling 27

Forward-Filtering

• Run the first pass of Belief Propagation, sending µ and ν messages from the leaves to the

root. Refer to Figure 2.6.

Backward Sampling

• Sample from the root node x1, and record the sample as x1. We can obtain its marginals

by computing:

p(x1) ∝
Y

p∈N (x1)

µp→1(x1)

• Do a depth-first traversal of the tree T , starting from the root node x1. During the course

of this traversal, whenever a node corresponding to a potential ψi is encountered :

– We note Ci = {x1,x2, . . . ,xk} the clique corresponding to ψi, with x1 the parent of

Ci.

– For m = 2, . . . , k:

∗ Compute message µi→m:

µi→m(xm) ∝
X

xm+1:k

ψi(x1:m−1, xm,xm+1:k)
Y

l=m+1:k

νl→i(xl) (4.6)

∗ Sample xm from p(xm|x1:m−1):

p(xm = xm|x1:m−1) ∝ µi→m(xm)
Y

j∈N (m)\i

µj→m(xm) (4.5)

∗ Record the sample as xm.

Figure 4.5: Forward-Filtering Backward-Sampling for a discrete factor tree T .

the previous section. Of course, this is true for every tree T in the partition T . Given

all other trees3, we can thus obtain a full joint sample for any single tree T .

Using this idea, we construct a blocked Gibbs sampler. We don’t sample individual

variables one at a time, but entire trees. In fact, the “simple” Gibbs sampler can be

seen as a special case of our more general tree sampler, where all trees are just in fact

single variables.

3Given all other trees actually means “given all the variables in the other trees”.

Chapter 4. Combining Monte Carlo and Belief Propagation: MCMC Tree Sampling 28

Before describing the MCMC tree sampler implementation, we enumerate the dif-

ferent rules needed to generate correct tree partitions for MCMC sampling.

4.3.1 Tree partitions for Pairwise Markov Random Fields

For a pairwise MRF G(V, E), the problem of choosing a tree partition can be reduced

to the mathematical problem of finding a set of l disjoint trees T1(V1, E1), . . . ,Tl(Vl, El)

covering G. The partition must comply with the following rules:

Rule 1. Every vertex and edge in a tree T ∈ T must also be present in the original

graph G.

Rule 2. Each vertex must be present in one of the trees of T , and only in one tree.

That is, the set of trees is disjoint.

Rule 3. For each tree T , and each pair of vertices (i, j) in T , if there exists an edge

between i and j in the original graph, then the same edge must be present in T .

We will delete some edges so that there are no edges between different trees. A

deleted edge will correspond to a link between a variable belonging to the tree that

we are currently sampling, and another variable in a different tree. This other RV will

be considered observed while we sample the current tree. The last rule can thus be

written as:

Rule 4. For each edge (i, j) in the original graph G, if vertices i and j belong to

different trees in the tree partition, then (i, j) /∈ Ek, for k ∈ {1, . . . , l}.

These four rules can be combined into the following formal definition.

Definition 4.3.1. Given a graph G(V, E), an MCMC tree partition is a set of l trees

{T1(V1, E1), . . . ,Tl(Vl, El)} satisfying the following conditions:

∀k ∈ {1, . . . , l},Vk ⊂ V, Ek ⊂ E (4.7)

l⋃

i=1

Vi = V (4.8)

Chapter 4. Combining Monte Carlo and Belief Propagation: MCMC Tree Sampling 29

∀(i, j) ∈ {1, . . . , l}2,Vi ∩ Vj = ∅ (4.9)

∀k ∈ {1, . . . , l},∀(i, j) ∈ V2
k , (i, j) ∈ E ⇒ (i, j) ∈ Ek (4.10)

Rule 1 gives (4.7); Rule 2 gives both (4.8) and (4.9). Rule 3 gives (4.10), while

Rule 4 does not need to be formulated explicitly, as tree edges can occur only between

vertices actually in the tree.

An MCMC tree partition is just a disjoint covering of the graph’s vertices by several

trees. We are allowed to discard edges between two distinct trees. Figure 4.6 gives an

example of a valid MCMC tree partition on a small graph.

Figure 4.6: The original pairwise 14 nodes graph with several loops (left) has been

partitioned into 3 trees (nodes in white, grey, and black) on the right. Edges that link

vertices belonging to the same tree appear solid, while edges that are “left-out” appear

dotted. Note that it is impossible, for this graph, to obtain an MCMC tree partition

consisting of only 2 trees.

It is also interesting to note that a square lattice MRF of an arbitrary size can

always be partitioned in two trees using a “comb” partition. In fact, it can even be

partitioned in two chains using a spiraling pattern. Figure 4.7 shows these partitions

on a 8 by 8 square lattice MRF.

These tree partitions allow us to sample variables in groups. Given all other trees,

we can sample an individual tree in one pass according to Section 4.2.1. Potentials cor-

responding to edges between different trees depend originally on two RVs. While one

Chapter 4. Combining Monte Carlo and Belief Propagation: MCMC Tree Sampling 30

Figure 4.7: Two different MCMC tree partitions of a square lattice MRF, using a

comb pattern (left) and a spiraling pattern (right).

tree is conditioned (observed), they become potentials of a single variable. Figure 4.8

illustrates this.

Potentials linking the tree currently
being sampled and another tree

Figure 4.8: The process of sampling from one tree in an MCMC tree partition. The

variables in white are currently sampled, while shaded nodes correspond to variables

conditioned. The red edges (dotted) correspond to potentials that are linked both to

a white and shaded variable. Conditioned on the shaded variable, they depend on a

single variable.

For any RV xi in the tree T that we are currently sampling, we look at its edges. If

an edge goes to a RV xj in a different tree, we incorporate the potential ψ associated

with this edge with the local potential φ of xi. We do so by taking the product of ψ,

Chapter 4. Combining Monte Carlo and Belief Propagation: MCMC Tree Sampling 31

conditioned on xj , and φ:

φnew(xi) = φ(xi)
∏

(i,j)∈E,j /∈T

ψ(xi, xj) (4.11)

Once we have incorporated all these potentials onto φnew, we are then ready to use

the tree sampling method of section 4.2.1.

4.3.2 Choosing a tree partition for Factor Graphs

Unfortunately, the rules for obtaining an MCMC tree partition for a Factor Graph are

different than those for a pairwise graph. One could naively think of a factor graph as a

pairwise graph for the purposes of generating an MCMC tree partition4 and apply the

rules of section 4.3.1. This would not work, because the property that the potentials

should depend on a single variable (when conditioned on all trees except the one we

are currently sampling) no longer holds. Figure 4.9 will help the reader understand

the issue at hand.

In order to avoid this case, we need to add another rule to our existing four rules:

Rule 5. For each tree T in the MCMC tree partition T , and each potential ψ in T ,

if C = {x1, . . . ,xk} is the set of RVs ψ is linked to, at most one variable xi ∈ C may

be in each single other tree in T .

This ensures that a potential ψ belonging to a conditioned tree will not pose

problems when sampling the current tree. Again, let us write a formal mathematical

definition for a MCMC tree partition, in the factor graph case.

Definition 4.3.2. Given a factor graph G(V(X,P), E), a MCMC tree partition is a set

of l trees {T1(V1(X1, P1), E1), . . . ,Tl(Vl(Xl, Pl), El)} satisfying the following conditions:

∀k ∈ {1, . . . , l},Vk ⊂ V, Ek ⊂ E (4.7)

l⋃

i=1

Vi = V (4.8)

4That is, consider all vertices equal, whether they correspond to RVs or potentials.

Chapter 4. Combining Monte Carlo and Belief Propagation: MCMC Tree Sampling 32

Figure 4.9: A wrong MCMC tree partition for a Factor Graph. While the given

partition in two trees (white and shaded) would have been legitimate for a pairwise

graph, it is not valid for a factor graph. The problem arises when sampling the white

tree. The two red-dashed edges show that while conditioning out the shaded RVs,

one of the potentials ψ belonging to the shaded tree depends on two variables x1 and

x2 in the white tree. Thus, ψ can not be considered as a potential depending on a

single variable while we sample the white tree. We have a loop, which makes the use

of algorithm 4.5 impossible.

∀(i, j) ∈ {1, . . . , l}2,Vi ∩ Vj = ∅ (4.9)

∀k ∈ {1, . . . , l},∀(i, j) ∈ V2
k , (i, j) ∈ E ⇒ (i, j) ∈ Ek (4.10)

∀k ∈ {1, . . . , l},∀i ∈ Pk,∀m ∈ {1, . . . , l} \ k,

∣∣∣∣(i, j) ∈ E | j ∈ Vm

∣∣∣∣ ≤ 1 (4.12)

Figure 4.10 gives a corrected tree partition for the factor graph of figure 4.9. In

practice, the property expressed by Equation (4.12) makes it much harder to find

factor graph MCMC tree partitions.

4.4 MCMC Tree Sampling Implementation

In this last section, we provide the full pseudo-code for the MCMC tree sampler. The

overall structure is the one of a Gibbs Sampler. Variables are replaced with trees. To

Chapter 4. Combining Monte Carlo and Belief Propagation: MCMC Tree Sampling 33

Figure 4.10: A legitimate MCMC tree partition, with the addition of a third tree (in

black). Now the potential linked to four variables has 2 variables in its own tree, and

only one variable in each of the other trees. Property (4.12) is respected.

sample from these trees, we will use the methods described in Figures 4.2 and 4.5.

We have not discussed so far the output of the results. If we interpreted MCMC

tree sampling merely as an improvement over Gibbs sampling, we could just count

the samples obtained for each variable. We would use the Monte Carlo histogram

as the approximation to the marginals. Per sample, MCMC tree sampling would be

more efficient that Gibbs sampling, since we sample from a much larger state space

with tree sampling. It turns out that with MCMC tree sampling, we can adopt Rao-

Blackwellized estimates instead of the simpler Monte Carlo histogram that corresponds

to counting [6].

4.4.1 Rao-Blackwellization

For Rao-Blackwellization, we add directly the conditional probabilities we computed

for variable xi at each step t. These probabilities are conditioned on the RVs not on

the tree containing xi, denoted as T (i). We denote this set of RVs x∆. These values

can be computed by a simple application of Belief Propagation (see Section 2.2) to the

tree T (i), conditionned on all the other trees ∆.

For T total samples, the expression of both estimates is given by Equations (4.13)

Chapter 4. Combining Monte Carlo and Belief Propagation: MCMC Tree Sampling 34

and (4.14).

Monte Carlo estimates: p̃(xi = xi) =
1

T + 1

T∑

t=0

δ(x
(t)
i = xi) (4.13)

Rao-Blackwellized estimates: p̃(xi = xi) =
1

T + 1

T∑

t=0

p(xi = xi | x
(t)
∆) (4.14)

It can be proven [6] that Rao-Blackwellized estimates have lower variance than

Monte Carlo estimates. The computation of RB estimates is more expensive, as it

requires us to compute the exact conditional marginals via BP at each step. However,

since we already have to do half the work of Belief Propagation to sample from a tree,

Rao-Blackwellized estimates only cost the other half of BP’s computational work. In

practice, the reduction in variance is worth this extra cost.

4.4.2 Pseudo-code and remarks

Figure 4.11 contains the pseudo-code for the MCMC tree sampler. Note the similarity

of this code with the Gibbs Sampler of Figure 3.1.

The MCMC tree sampler is a general Monte Carlo algorithm that builds on the

Gibbs sampler and improves it through intelligent blocking. We presented this algo-

rithm in its “one-partition” version, but we can also use MCMC tree sampling with

several tree partitions. At each sampling step, we choose a different tree partition

rather than a static one. That is, we use a mixture of MCMC kernels [20].

This variation on the basic MCMC tree sampler once more emphasizes the need for

generating many MCMC tree partitions. Obtaining a correct MCMC tree partition is

a hard problem. We attack this task in the next chapter.

Chapter 4. Combining Monte Carlo and Belief Propagation: MCMC Tree Sampling 35

Initialization

• Obtain a tree partition T = {T1(V1, E1), . . . , Tl(Vl, El)} from the original graph G(V, E).

See Chapter 5 for the partition finding algorithm.

• Initialize X(0) = {x(0)
1 ,x

(0)
2 , . . . ,x

(0)
n } at random.

MCMC Tree Sampler steps

• For t = 1, . . . , T

– For i = 1, . . . , l

∗ x
(t)
∆ = {x(t)

k | xk ∈ ∪i−1
j=1Vj}

S
{x(t−1)

k | xk ∈ ∪l
j=i+1Vj}

∗ Run Belief Propagation on the tree Ti, conditionned on x
(t)
∆ (the other trees).

Obtain the conditional marginals at time t, p(xi = xi | x
(t)
∆).

∗ Use Forward-Filtering Backward Sampling to generate a full sample of the tree

Ti. Refer to Figure 4.2 for a pairwise graph or to Figure 4.5 for a factor graph.

We obtain x
(t)
k ∀ xk ∈ Vi.

Marginals computation

• For every variable xi, output the Rao-Blackwellized estimates:

ep(xi = xi) ∝
TX

t=0

p(xi = xi | x
(t)
∆) (4.14)

Figure 4.11: The MCMC Tree Sampler algorithm, for T steps and a graph G(V, E).

Under her song the saplings

grew and became fair and tail.

The Silmarillion J.R.R.

Tolkien

Chapter 5

Finding MCMC Tree Partitions

The MCMC tree sampling algorithm introduced in Chapter 4 represents a consider-

able improvement over simple Gibbs sampling. However, it requires an MCMC tree

partition of the graph. This chapter provides solutions to the problem of finding this

partition automatically.

5.1 Introductory remarks

5.1.1 Definition of the problem

Given any pairwise or factor graph, we want to partition it according to the defini-

tions 4.3.1 and 4.3.2. The difficulty arises not from the mathematical definitions, but

from the optimality of such a partition.

Finding a correct tree partition is actually trivial. It is sufficient to take every

variable node in the graph and declare that this single node forms a tree. We will thus

obtain as many trees as there are variables. This partition corresponds exactly to the

simple Gibbs sampler, so we lose the benefits of tree sampling.

The problem is to find an MCMC tree partition that will give good sampling

performance. Ideally, we would like to have a partition with as few trees as possible,

and large trees. This intuition is based on the theoretical results in [6].

5.1.2 Search heuristics to minimize the number of trees in an

MCMC tree partition

While it is possible to evaluate the performance of various MCMC tree partitions

empirically, understanding why a given partition gives better performance is extremely

36

Chapter 5. Finding MCMC Tree Partitions 37

hard. We focus on designing an algorithm to minimize only one factor: the total number

of trees in the partition.

Our partition-finding algorithms are based on search heuristics, not mathematical

properties. In fact, our specific problem does not appear to have been tackled in the

graph theory literature. There are many results on partitioning a graph into trees.

The most famous one was obtained by Nash-Williams in [18]; more recently, see also

[2]. Unfortunately, all these results are not applicable to our case, since the partitions

obtained respect radically different properties.

5.2 The pairwise case

5.2.1 Essential choices

Our exploration mechanism for partitioning a graph is based on a vertex search. This

means we continuously add vertices to a current tree. Once we cannot add more

vertices to the current tree, we remove it from the graph and start with a new (empty)

tree on the rest of the graph. In order to ensure that this process will terminate,

we need to assert that the trees created will respect Definition 4.3.1 and that we can

always add at least one vertex to a new tree. Adding one vertex is in fact always

possible in an obvious manner, since we pointed out that we can make a partition

consisting of one-variable trees. To respect Definition 4.3.1, we need to introduce an

exploration mechanism.

It should be noted that this vertex search choice is not a requirement. A completely

different approach could have been taken. For example, one could try to focus on

removing some edges (perhaps every time there is a loop). The strategy of creating

trees one at a time is also questionable; trying to partition a graph “globally” can

make more sense. We make no claims that our approach is the best. However, it is

easy to implement, and its computational complexity is low. Other approaches seemed

more complex, and thus more risky.

Chapter 5. Finding MCMC Tree Partitions 38

5.2.2 General overview

While the next sections will describe in more detail our partitioning algorithm, we

present an overview first in Figure 5.1.

• i = 0

• While there are vertices in G(V, E), e.g., V 6= ∅:

– i = i+ 1

– Optional: simplify G(V, E). See Section 5.2.3.

– Start a new tree Ti(Vi, Ei). Create a priority queue Qi, and enqueue the vertex u ∈ V

with the lowest degree in Qi.

– While there are vertices in Qi, e.g., Qi 6= ∅:

∗ Pop the first vertex u ∈ Qi.

∗ Examine u. If u can not be added to Ti, go to the next vertex in the queue.

Else:

· Add u to Vi.

· For each neighbor v ∈ N (u), examine v. If v can not be added to Ti, mark

it as such. Else add v to Qi.

– For each edge (u, v) ∈ E , if u ∈ Vi and v ∈ Vi, add (u, v) to Ei.

– Remove all vertices u ∈ Vi from V. Remove all edges that have an extremity in Vi

from V.

• Output tree partition T = {T1(V1, E1), . . . , Ti(Vi, Ei)}.

Figure 5.1: Structure of the partitioning algorithm for a pairwise graph G(V, E).

We have been deliberately vague in this pseudo-code. We have not revealed how

we examine the vertices, and thus how we decide if they can, or cannot, be added to

the current tree. The exploration algorithm works by moving from vertex to vertex,

adding them (or not) to a current tree. We move from a vertex to another only along

the edges of the graph, because we only enqueue vertices that are neighbors of the

current one.

Chapter 5. Finding MCMC Tree Partitions 39

Visually, this algorithm is simple to imagine. Starting from the vertex of lowest

degree in the original graph, it progressively “builds” a tree by exploring around this

first vertex, ensuring that the tree will respect definition 4.3.1. When the tree can not

grow larger, we entirely remove it from the graph and start again the process with the

remaining graph.

5.2.3 Simplifying the initial graph

Figure 5.2: Simplification of a graph before partitioning occurs. The vertices that will

be pruned appear as shaded nodes. The gray edges will be removed too.

In pairwise graphs, we can optionally perform some simplifications first. These

simplifications rely on the fact that trees “attached” to the original graph can auto-

matically be included in the partition tree containing their parent. They don’t need

to be explicitly visited by the exploration mechanism.

In practice, we execute the simplification code prior to each run of the exploration

algorithm. Vertices with a degree1 of 1 can be recursively pruned. Vertices with a

1The degree of a vertex is its number of neighbors in the graph.

Chapter 5. Finding MCMC Tree Partitions 40

degree of 2 can also be pruned if their neighbors are not themselves linked. Figure 5.2

shows an example of a simplification.

5.2.4 Exploring and coloring the graph

We use the exploration mechanism each time we need to add a new tree to the partition

(starting with an empty partition). During exploration, we label the encountered

vertices with different colors. We start with all the vertices initially set to a white

color. When we add a vertex to the current tree, we mark it as red. We use gray to

indicate that a vertex is in the priority queue, and black to indicate the vertices that

cannot be included in the current tree.2

At the end of an exploration phase, all vertices will be either labeled as red (in-

clusion in the current tree) or as black (inclusion in another future tree). We will

definitely remove the red vertices from the original graph G. The black vertices are

those that remain to be partitioned.

We change the color of vertices only at two points in the algorithm of Figure 5.1.

When we add a vertex to the current tree, we label it in red. When we examine each

neighbor of a current vertex, we color it according to the following four rules:

Rule 6. If the neighbor has color red, do not change its color.

Rule 7. If the neighbor has color white, change it to gray.

Rule 8. If the neighbor has color gray, change it to black.

Rule 9. If the neighbor has color black, do not change its color.

If the neighbor is red, we are looking at the vertex that was encountered prior to

the current one in the same exploration phase. We do not do anything in this case as

this vertex is already in the current tree, and should not be further modified.

2In the figures of this thesis, we used a light gray and a strong red. This allows the figures to make

sense if the thesis is printed in black and white: red appears as a dark gray while gray appears as a

light gray.

Chapter 5. Finding MCMC Tree Partitions 41

Encountering a white neighbor means that we have reached a new vertex never

seen before. It should be marked as gray, because we will include it in the priority

queue. It becomes a candidate for the next vertex to be chosen by the exploration

method.

A gray neighbor is a vertex that we could reach from another of the vertices already

in our current tree. This vertex, if we added it to the tree being built, would create a

loop. It should thus not be added. We mark it as black to remember that it will not

be part of the current tree.

When encountering a black vertex, we obviously leave it black.

1

2

4

5

6

7

8

9

1

2

4

5

6

7

8

9

1

2

4

5

6

7

8

9

Starting Vertex

Current Vertex
(one of the

candidate vertices)

3 3 3

Figure 5.3: The process of coloring a graph. We start with vertex 1. It has neighbors

2 and 5, which we select as next candidates and label in gray. We then move to vertex

2, and then to vertex 3, adding them to the tree and coloring them in red. At the end

of the exploration of the third vertex, 4 vertices are in the priority queue: 4, 5, 6, and

7.

When we have finished exploring and labeling all the neighboring vertices, we

enqueue all the vertices marked in gray. The priority queue Qi corresponds to the set

of vertices that are the “next candidates” for exploration. We use the term “priority

queue” because there is an ordering on these vertices, as we will explain on the next

section.

Chapter 5. Finding MCMC Tree Partitions 42

1

2

4

5

6

7

8

93

1

2

4

5

6

7

8

93

1

2

4

5

6

7

8

93

 A black vertex: choosing
 it would disrupt the tree

 (create a loop)

Final stage: the graph is
partitioned in two trees

Figure 5.4: Second part of the coloring process. Jumping from vertex 3 to vertex 7,

we encounter our first black vertex (6) when we visit vertex 9. Vertex 6 was already a

neighbor of vertex 3. It is colored in gray. Since it is also a neighbor of 9, it becomes a

black vertex. The last vertex to be included in the graph is vertex 8. Note that adding

vertex 8 terminates the process of labeling all the vertices as either red or black.

Each time we retrieve a vertex u from the queue Qi, we test its color first. If it

is not black, we do add it to the current tree and thus change its color to red. If it

is black, we just skip this vertex as written on 5.1). This is important, because while

its initial color was gray when we originally added it to the queue, its color may have

changed to black by the time we retrieve it from the queue.

Figures 5.3 and 5.4 present a full example of graph coloring. Starting a new

exploration with the 3 remaining black vertices (4, 5, and 6) will just lead to a new

tree containing these 3 vertices. So we finally obtain a partition consisting of two trees.

5.2.5 Choosing an ordering on the priority queue

This section addresses the important issue of the ordering on the priority queue Qi.

The exploration algorithm should favor some vertices over others when it selects its

next vertex. All gray vertices should not be considered equal, but “ordered”.

To specify an ordering on a queue, we just need to supply a comparison function

Chapter 5. Finding MCMC Tree Partitions 43

comp() between two vertices u and v. If comp(u, v) = true, then by convention u will

be out of the queue before v.

The priority queue ordering has a dramatic effect on the partitions that will be

computed. There are many orderings that could be proposed. We tried a number

of different methods, evaluated their performance, and chose the best. The “best

method” is however dependent of the particular structure of the graph. Our proposal

is not always optimal, but pragmatic.

comp(u, v)

• Compare the number of available (white) neighbors for u and v, and favor the vertex

that has the lowest number of such available neighbors. If u and v have an equal number

of available neighbors:

– Compare the general degreea of u and v, and favor the vertex that has the lowest

degree. If u and v have the same degree:

∗ Compare at which step of the exploration algorithm u and v were entered in

the queue, and favor the vertex that was entered the last. If both vertices

u and v were entered at the same step (which means they have a common

neighbor):

· Determine at random which of the two vertices will be favored.

aThe degree of a vertex is its number of neighbors in the graph.

Figure 5.5: A general comparison function between two vertices u and v, used to define

an ordering on the queues Q.

Figure 5.5 describes this proposal. We define the number of available neighbors for

a vertex u as the number of its neighbors that are not colored yet (white). When we

enter a vertex into the queue, we compute this number. It can decrease during the

course of the exploration algorithm, but we do not update it later, as it would be too

costly for large graphs.

On our ordering, we use a random choice in last resort. The introduction of

Chapter 5. Finding MCMC Tree Partitions 44

randomness in the process is actually interesting. It means that several runs of the

partitioning algorithm will produce different partitions. One could then try to run the

algorithm several tries in order to get a “lucky run”. If we had chosen a completely

random comparison function, we would be sure to get the optimal partition by running

the partitioning algorithm an infinite number of times. In practice, this is infeasible.

However, the partition of the graph can be done as an offline process. It may be

worth to spend a lot of computational time to get a “good” partition first. Once a

MCMC tree partition is found, it is valid for any probabilistic problem that has the

same underlying graph. It can be reused even if the potentials and variables in the

graph change.

Let us see on an example how our ordering works. In fact, the exploration process

of Figures 5.3 and 5.4 would have been different if we had used our comparison function

(rather than some seemingly random one). Figure 5.6 shows the partitioning process

with our new ordering.

1

2

3

4

5

6

7

8

9

1

2

3

4

5

6

7

8

9

1

2

3

4

5

6

7

8

9

Figure 5.6: Partition of a graph, using an ordering on the queue.

We still start at vertex 1, because it has the lowest degree in the graph. Between

its two neighbors 5 and 2, we favor 2 because it only has two available neighbors (3

and 4), whereas 5 has three (4, 6, 8). We thus move to 2 which neighbors are 3 and

4. We choose 4 because it has only one available vertex (8, since 5 is gray and 2 is

red). 5 becomes black and our next choice can only be 8 that has only one available

Chapter 5. Finding MCMC Tree Partitions 45

neighbor.

At this point vertices 3 and 9 are in the queue. They both have the same number

of available neighbors (two) and overall degree (three), so we use the third rule in our

comparison function. We favor 9 because we encountered it more recently than 3. We

can then choose between 3, 6 and 7. They all have no available neighbors, but we

select 7 because its overall degree is lower. We thus obtain the tree (1-2-4-8-9-7) and

(3-6-5). This is a different partition than the one obtained in figure 5.4.

5.2.6 A useful improvement

A traditional technique while solving constraint based problems is called backtracking.

It involves “moving back” in the algorithm. If at some point we realize our choices

were not optimal, we move back to the wrong choice and correct it. Backtracking is

obviously costly in terms of computational power. We did not include a fully developed

backtracking system in our algorithm. However, there is a simple improvement that

can be implemented with a backtracking size of one. This allows to “forget” the current

vertex and choose another one if needed.

With one-step backtracking, we can avoid the kind of situation described in Fig-

ure 5.7. Let us pretend that we have explored the graph, starting from vertex 1.

We explored3 2, 3, 4, 5 and finally 6. At this point, vertices 7 and 9 are labeled in

black, and we cannot choose them. Vertex 8 is in gray and is the next candidate for

exploration.

If we choose vertex 8, it gets added to the current tree, and this leads to a sub

optimal result later. This is because adding 8 to the current tree, while legitimate,

will “cut off” the only path between the remaining vertices 7 and 9. If vertex 8 was

available for the next tree, the next tree would obviously contain 7, 8 and 9. The tree

partition would thus have 2 trees and be optimal. But if vertex 8 is added to the first

tree, 7 and 9 will constitute one node trees later, and the partition will have three trees:

(1-2-3-4-5-6-8), (7), and (9). Our improvement consists in making the algorithm aware

3This example does not use any ordering on the queue. The exploration sequence shown here is

however likely to appear in practice.

Chapter 5. Finding MCMC Tree Partitions 46

Figure 5.7: Exploration of a graph resulting in a sub optimal partition. Normally,

the algorithm would now explore vertex 8, adding it to the current tree. This would

result in a partition with three trees. We can obtain the optimal partition if we do

not explore 8 and mark it as black.

that choosing 8 is sub optimal. It is better to stop at the step described in Figure 5.7.

The implementation of this improvement is easy. We keep a record of available

edges4 for every node. This number is initially equal to the number of neighbors of

the node, and decreases by one each time one of the neighbor is encountered. We then

write the following rule:

Rule 10. Whenever the number of available edges for a vertex reaches 0, we backtrack.

In our example, there are initially four available neighbors for vertex 7. When we

explore 3, 4, and 5 this number drops to one. When we explore 8, that number drops

to zero. According to Rule 10, we backtrack. We do not label 8 in red, and instead

mark it in black. When a vertex is the last “escape route” for another vertex already

labeled in black, we can always be sure that it is better to backtrack. If we added

the vertex to the current tree, we would need another tree for the trapped vertex. If

we leave the vertex for later, we may avoid the need for another tree, or we may not.

When backtracking, the situation is not automatically better. But it cannot be worse.

4The number of available edges is the same as the number of available neighbors. This number is

also used for the ordering of the queue in Section 5.2.5.

Chapter 5. Finding MCMC Tree Partitions 47

Figure 5.8: Another example of “trapped vertices”. 7 and 10 can only be linked to

9 via 8. As in Figure 5.7, we should not add vertex 8 to the current tree. With a

generalized propagation of information about available neighbors, 7 will contact 10

when it understands that 10 is its only remaining neighbor. It will happen when we

will have visited vertices 3, 4 and 5.

Improvements with trapped vertices, or isolated vertices5, can go even further than

the simple example of Figure 5.7. Figure 5.8 shows a slightly modified graph, where

the only change is the addition of vertex 10 between vertices 7 and 8. On this graph,

we would like the same backtracking to happen. Adding vertex 8 to the current tree is

worse than leaving it for the future. With the implementation we just described, ver-

tices 7 and 10 would never reach zero available neighbors, as they are linked together.

Since we never explore 7 or 10, both of these vertices keep believing that they have an

escape route available. No backtracking takes place.

The solution is to use a propagation system. Whenever a vertex has only one

available neighbor and is black, we propagate this information to the only remaining

available neighbor. One vertex u essentially says to another v that its only escape path

is through v. The vertex v no longer counts u as an available neighbor. This propaga-

tion can go on as many times as needed. If at the time v receives this information, it

5These terms refer to black vertices that have only one possible escape path to link them to the

rest of the graph. Vertices become trapped during the exploration of the graph.

Chapter 5. Finding MCMC Tree Partitions 48

understands that its number of available neighbors has dropped to a single neighbor

w, it can contact w, and so on.

In our example, vertex 10 will have a number of available neighbors equal to zero

when vertex 8 is explored. The backtrack will happen and vertex 8 won’t be labeled

in red, but in black.

5.2.7 Full Pseudo Code for our partitioning implementation

In this section we give a more detailed pseudo code version of the algorithm (Figures 5.9

and 5.10), and we discuss its computational complexity.

In the worst case, the computational complexity of our partitioning method is

O(N2) for a fully-connected graph with N vertices. We visit each vertex once, and

on each vertex, we explore all its neighbors. We obtain a complexity of O(N2) for a

fully-connected graph6 . For graphs where the average number of edges per vertex is

low compared to N , the computational complexity is just O(N). This is often the case

in practice.

For the naive Gibbs sampler, the complexity for a single step is the product of the

number of vertices and the number of edges per vertex. The time needed to find a

tree partition is thus comparable to the time needed to obtain a sample of the whole

graph. Since many samples are needed to perform inference efficiently, the inference

computations are responsible for almost all the computational time. We can safely

ignore the cost of finding partitions when using tree sampling.

5.3 The general case

We will now discuss our partition finding algorithm for factor graphs. Good tree

partitions on such graphs are harder to obtain. Whereas in the pairwise case large

trees can be found by our automatic algorithm, usually trees will be much smaller for

factor graphs.

6This result is not immediate, since the number of neighbors per edge decreases with each explo-

ration phase. Some work is required to prove that the complexity is actually O(N2).

Chapter 5. Finding MCMC Tree Partitions 49

• i = 0

• While there are vertices in G(V, E), e.g., V 6= ∅:

– i = i+ 1

– Optionally, simplify G(V, E) according to the rules in Figure 5.10. For each vertex in

V, initialize the variable representing the available number of neighbors to the actual

number of neighbors. Label each vertex in V in white.

– Start a new tree Ti(Vi, Ei). Create a queue Qi, and enqueue the vertex u ∈ V with

the lowest degree in Qi.

– While there are vertices in Qi, e.g., Qi 6= ∅:

∗ Pop the first vertex u ∈ Qi.

∗ Look at the color of u. If u is black, go to the next vertex in the queue. Else,

label u in red. Perform the following for each neighbor v ∈ N (u):

· If v only has one remaining available neighbor (which is u), stop and back-

track (e.g., undo all operations done in this loop) to another vertex in the

queue. Mark u as black.

· Look at the color of v and change it according to the rules in Figure 5.10.

· Decrease the number of available neighbors in v. If that number reaches

1, v has a single available neighbor w. Decrease the number of available

neighbors for w, and continue to propagate these changes until we encounter

a vertex having more than one available neighbor.

∗ Enqueue all gray vertices in Qi, according to the ordering described in Figure 5.5.

– For each vertex u ∈ V that is red, add u to Vi.

– For each edge (u, v) ∈ E , if u ∈ Vi and v ∈ Vi, add (u, v) to Ei.

– Remove all vertices u ∈ Vi from V. Remove all edges that have an extremity in Vi

from V.

• Output tree partition T = {T1(V1, E1), . . . , Ti(Vi, Ei)}.

Figure 5.9: Full pseudo-code of the partitioning algorithm for a pairwise graph G(V, E).

Chapter 5. Finding MCMC Tree Partitions 50

Simplification Rules

• Prune out vertices with degree equal to 1. As long as the following loop removed one vertex,

do:

– For each vertex u in V:

∗ If degree(u) = 1, remove u and the edge linking u to its parent v from the

graph. We will later add u to whatever tree v is in.

• Prune out vertices with degree equal to 2. Do the following loop once:

– For each vertex u in V:

∗ If degree(u) = 2, look at its two neighbors v and w. If v and w are not linked,

remove u and the edges linking u to its neighbors. Add an edge from v to w.

We will later add u to whatever tree v is in.

Color Changing Rules for a vertex u

• If v has color red, do not change its color.

• If v has color white, change it to gray.

• If v has color gray, change it to black.

• If v has color black, do not change its color.

Figure 5.10: Auxiliary functions for the partitioning algorithm code.

Most of the algorithm is identical to the pairwise case. Generally, we consider

all nodes to be “equal”, whether they correspond to random variables or potentials.

We distinguish between potentials and variables only when needed. The coloring part

of section 5.2.4 will be used without any changes. We use the same colors as before

(white, red, gray, black). The ordering on the queue can also remain the same.

5.3.1 Changes in the factor graph case

A minor modification is the absence of simplifications. Pruning the vertices of degree

2 is no longer possible with factor graphs. In our implementation, we removed all the

simplifications, even if technically pruning the vertices of degree 1 is still feasible.

Chapter 5. Finding MCMC Tree Partitions 51

The main change is due to Rule 5. It introduces a new backtracking condition:

Rule 11. During the exploration of a variable node u, we backtrack if we encounter

a gray neighbor v.

This vertex v corresponds to a potential. Since it is already labeled in gray, it is

linked to a RV w in the current tree. If we do not backtrack, we include u in the cur-

rent tree and set v to black. We then have, in the current tree, two random variables

linked to the same potential v. The potential v belongs to another tree, since it has

been marked as black. This is a violation of Rule 5.

Backtracking, and thus not choosing u for inclusion in the current tree, is necessary

to respect Rule 5. When we backtrack due to this new condition, the gray potential

stays in gray. There is no need to label it in black. Indeed, this potential can be

included later by the exploration mechanism.

This new backtracking condition is almost sufficient in itself to enforce Rule 5.

The only additional requirement is that we keep all potentials still linked to two black

variables, at the end of each exploration phase. We won’t add these potentials to

future trees. But they must be present in future graphs so that Rule 11 may apply.

In terms of implementation, they will obey the normal coloring rules. They cannot be

entered in the priority queue for inclusion in the current tree.

5.3.2 A Factor Graph partitioning example

The following example describes a complete run of the partitioning algorithm on a

factor graph.

We start at vertex 1, which has one of the lowest degree on the graph. Vertex 3

has an available number of neighbors lower than 2, so we select it next. We then have

vertex 2, 7, and 8 in the queue. 7 and 8 both had one available neighbor when entered

into the queue. We choose 7 since its overall degree is lower.

At this point, a backtrack occurs. Normally 8 should now be selected out of the

queue. However, when examining the neighbors of vertex 8, we encounter a gray

Chapter 5. Finding MCMC Tree Partitions 52

1
2

3

4 5

6

7

81
2

3

4 5

6

7

8 1
2

3

4 5

6

7

8

Figure 5.11: An example run of the partitioning algorithm on a Factor Graph.

1
2

3

4 5

6

7

81
2

3

4 5

6

7

8 1
2

3

4 5

6

7

8

A backtrack occurs when choosing 8 as the next vertex

Figure 5.12: The second part of the partitioning algorithm run.

potential (actually, two: 2 and 6). According to the mechanism described in 5.3.1, we

backtrack. We pop the next vertex out of the queue. Everything else is unchanged, as

if we never explored 8.

The next vertex happens to be 6. After 6, we cannot add any more vertex to the

current tree. We would encounter backtracks if we were to explore 4 and 5. It would

be legitimate to add the potential 2 to the current tree, but this would trap vertices

4, 5, and 8. According to Section 5.2.6 and Rule 10, we do not add 2 to the first tree.

Our first tree contains 1, 3, 6, and 7. We can safely forget potential 3. Potential 6

has more than one variable in black, so we keep it for the next round. Because of this

potential, variables 4, 5 and 8 must be in separate trees. In the end, we finish with a

partition of four trees.

This example demonstrates that good partitions are much harder to obtain on

factor graphs. If the same graph was pairwise, we could have partitioned it in only

Chapter 5. Finding MCMC Tree Partitions 53

1
2

3

4 5

6

7

8

Figure 5.13: The final partition obtained, with four trees.

two trees. With FGs, we often obtain partition consisting of many small trees (see

Section 6.4.3). On such partitions, tree sampling amounts to Gibbs sampling.

And there arose a multitude of

growing things great and small.

The Silmarillion J.R.R.

Tolkien

Chapter 6

Experimental Results

This chapter regroups all our experimental results: a comparison of inference algo-

rithms for pairwise graphs, for factor graphs, and the performance of our partition

finding algorithm.

6.1 Experimental Setup

We used the distance between computed and true marginals as an error benchmark

for our inference comparisons. If we write pC(xi = xj) and pT (xi = xj) respectively

the computed and true marginals of xi, the following equation gives the error E:

E =
∑

xi

∑

xj

(pC(xi = xj) − pT (xi = xj))
2 (6.1)

For the same experiment, we used several runs in order to assess the variance of

the inference algorithms. The same model is used throughout the experiment, but the

parameters change and are generated for each run. The results (errors) are plotted

as box plots against adjusted computational time. Adjusted computational time only

means actual time, which allows for a fair comparison. We let the algorithms run for

the same number of seconds before recording their errors E via Equation (6.1).

We present comparison plots in pair. On the same page, the bottom plot is a zoom

of the top plot. This is necessary, since some errors bars are often invisible (too small)

in the unzoomed plot.

54

Chapter 6. Experimental Results 55

6.2 Inference on Pairwise Graphs

We embedded a classical Potts model on our experimental pairwise graphs. Each RV

could take three values. We chose uniform local potentials φ, so they did not matter.

Between RVs xi and xj we used the following interaction potential ψ(xi,xj):

ψ(xi = i,xj = j) = e
1
T
Mi,j (6.2)

where Mi,j is a three-by-three diagonal matrix. The parameters Mi,i were drawn from

a standard Gaussian distribution1 with mean 0 and variance 1. We used the same

matrix M for each interaction potential.

Each RV in the graph had a probability Pobs = 0.2 to be observed. Between an

observed RV xi and a non observed xj, there was a different interaction potential

ψobs(xi,xj).

ψ(xi = i,xj = j) = e
1
T
Ni,j (6.3)

Ni,j is different from Mi,j, but is generated in the same way. T represents the

temperature and was set to 0.5 for all our experiments. 10 runs were made for each

experiment.

We computed the reference marginals with one long run of the Gibbs sampler, and

one long run of the tree sampler. If both runs converged to the same marginals (e.g.,

the error E between the marginals was very small), then these marginals were used

as “true marginals”. Else, this particular run was discarded along with the generated

parameters.

We used three different colors2 and outlier symbols in the plots: tree sampling

appears in black with ‘+’ outliers, Gibbs sampling in red (‘*’) and LBP in green (‘x’).

6.2.1 Fully Connected Graph

Figure 6.1 presents the comparison results on fully connected graphs with 20 RVs.

LBP often fails to converge. Tree sampling, despite the fact that a fully connected

1Mi,i were allowed to be negative.
2If this thesis is printed in grayscale, tree sampling is black, Gibbs sampling is gray, and LBP is

very light gray. This thesis should be printed in color, as it is much easier to distinguish the plots.

Chapter 6. Experimental Results 56

5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95

E
rr

or
s

Adjusted Computational Time

Tree Sampling & Gibbs Sampling

LBP

5 10 15 20 25 30 35 40

E
rr

or
s

Adjusted Computational Time

Tree Sampling

Gibbs Sampling

Figure 6.1: Performance comparison on a fully connected 20 nodes graph. The top

graph shows that LBP’s performance is very poor. These green lines of dots correspond

to the errors obtained by various LBP runs. These errors are constant, since LBP

converge almost instantly, and high. The bottom plot demonstrates the superiority of

tree sampling over Gibbs sampling.

Chapter 6. Experimental Results 57

graph forces it to create trees with only two nodes, is the best inference algorithm

here.

6.2.2 Square Lattice MRF

On a 25 by 25 MRF, tree sampling is again the best method. LBP fails to converge

on one of the 10 runs. The bottom plots of Figure 6.2 show that the tree sampler has

a slight performance advantage over Gibbs, but has an outlier run.

6.2.3 Random Graph

We generated a 1000 nodes random graph with a density of 0.01. The density corre-

sponds to the probability that any two given RVs are linked together.

Gibbs sampling completely diverged in one of the ten runs (not shown on Fig-

ure 6.3), and otherwise obtains correct results, but takes longer than tree sampling.

On random graphs, LBP tends to perform well. On our experiments, we found this to

be true when LBP converges. But some random graphs still cause LBP to misconverge.

On the graph of Figure 6.3, LBP slightly diverged on two runs. While tree sampling

also diverged by a moderate amount on one of the runs (and slightly on another one),

it is generally more reliable than LBP on random graphs3.

6.2.4 Remarks

On pairwise graphs, tree sampling performs remarkably well. We found Gibbs sampling

to be an efficient algorithm too. The true benefits of tree sampling, as compared to

simple Gibbs sampling, are probably more visible with much larger graphs.

However, conducting experiments with large graphs is challenging, as finding ground

truth is impossible. On a 1200 nodes random graph, the long Gibbs runs used for

computing the true marginals diverged by a significant amount on some cases. Gibbs

sampling then gives different results than tree sampling (and LBP does not converge

at all).

3Several other random graphs experiments, not shown, support this conclusion.

Chapter 6. Experimental Results 58

5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

E
rr

or
s

Adjusted Computational Time

LBP

Gibbs sampling

Tree sampling

5 10 15 20 25 30 35 40 45 50 55 60 65

0

0.05

0.1

0.15

E
rr

or
s

Adjusted Computational Time

LBP

Gibbs sampling

Tree sampling

Figure 6.2: Performance comparison on a 25 by 25 square-lattice MRF. LBP obtains

better results but the top graph still shows the presence of a very bad LBP run (high

error). On the bottom graph, it can be seen that tree sampling has a slight advantage

over Gibbs sampling. However, one of the tree sampling runs is an outlier.

Chapter 6. Experimental Results 59

5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95

E
rr

or
s

Adjusted Computational Time

Gibbs Sampling

LBP & Tree Sampling

10 15 20 25 30 35 40 45 50 55

E
rr

or
s

Adjusted Computational Time

Tree Sampling

LBP

Figure 6.3: Performance comparison on a 1000 nodes random graph. Gibbs sampling

has a poor performance here (it even totally diverged on one run, not shown in the

plots). LBP has two outlier runs. Tree sampling is efficient, except on one run when

it takes longer to converge.

Chapter 6. Experimental Results 60

6.3 Inference on Factor Graphs

We ran experiments on QMR (Quick Medical Reference) factor graphs. Jaakkola and

Jordan [10] describe QMRs in more detail, along with variational inference methods for

them. The joint probability of a QMR graph G(V,P) can be written in Equation (6.4):

P (X) =
1

Z

∏

i∈P

ψi(xCi
)
∏

j∈V

φ(xj) (6.4)

where φ represent the priors over the binary random variables (corresponding to dis-

eases), and ψ represent the potentials associated with positive findings4. An expression

for ψ is:

ψi(xCi
) = 1 −


(1 − qi0)

∏

j∈Ci

(1 − qij)
xj


 (6.5)

qi0 and the qij are the parameters of the model, and need to be chosen between 0

and 1. qi0 represents the leak probability for the finding i. This is the probability that

the finding is caused by other diseases than the ones included in the model. qij is the

probability than the disease j, if present, will cause a positive finding i.

For each experiment, the leak probability qi0 was fixed at a different value. This

parameter drastically influences the performance of our inference algorithms: a low

leak makes computing approximate inference harder. We set the number of RVs (dis-

eases) to 40 and the number of potentials (findings) to 14. A Bernouilli prior was

chosen for every disease, with a parameter of 0.01 for the presence of the disease.

We used 15 runs in each experiment. For each run, we chose the qij uniformly at

random between 0 and 1, and generated the QMR graph randomly. The density d,

representing the probability that a given RV will be linked to a given potential, was

set to 0.15. This is quite low, but necessary for us to be interesting. If d is high, it

is just impossible to create a worthy tree partition, and tree sampling becomes Gibbs

sampling (see Section 6.4.3).

4We only included positive findings in our experiments. Unobserved findings marginalize out and

have no effects on the posteriors of the RVs, while negative findings can be factorized into the RV

priors. Only positive findings make inference hard (see [10]).

Chapter 6. Experimental Results 61

We obtained the true marginals (posteriors) of the variables via the junction tree

algorithm in Kevin Murphy’s BNT Toolbox [16]. The errors were computed according

to Equation (6.1).

6.3.1 First QMR graph: low leak

A low leak corresponds to the hardest of our QMR experiments. Loopy belief prop-

agation fails to converge, and cycles through false beliefs. As shown on Figure 6.4,

both Gibbs sampling and tree sampling converge. Gibbs has the best performance, as

it produces much more samples than tree sampling in the same amount of time.

6.3.2 Second QMR graph: medium leak

With a medium leak, all three inference algorithms converge. Figure 6.5 shows that

tree sampling achieves the best performance, followed by LBP and Gibbs sampling.

6.3.3 Third QMR graph: high leak

A high leak corresponds to an easy situation. All algorithms converge (Figure 6.6).

Tree sampling (thanks to Rao-Blackwellization) and LBP both outperform simple

Gibbs sampling. LBP is the best algorithm here.

6.3.4 Remarks

A low leak corresponds to the most interesting case, as the graph is more constrained.

This causes LBP to fail on the first experiment. Tree sampling and Gibbs sampling

both converge every time. Gibbs sampling produces much more samples per second

than tree sampling, and outperforms our inference algorithm on these small test graphs.

As the leak increases, LBP and tree sampling start to perform better. On the high

leak case, LBP is extremely efficient. Tree sampling is the best on the medium leak

case.

The QMR experiments demonstrate that tree sampling is a compromise between

LBP and Gibbs sampling. Contrary to LBP, it never failed to converge. It is able

Chapter 6. Experimental Results 62

5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95

E
rr

or
s

Adjusted Computational Time

LBP

Tree sampler & Gibbs sampler

5 10 15 20 25 30 35 40 45 50 55 60 65

E
rr

or
s

Adjusted Computational Time

Tree sampler

Gibbs sampler

Figure 6.4: Performance comparison on a low-leak QMR network. The top plot shows

LBP cycling through different false beliefs. The bottom plot shows the two other

algorithms converging: Gibbs sampler converge faster.

Chapter 6. Experimental Results 63

5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95

E
rr

or
s

Adjusted Computational Time

Gibbs sampling

LBP

Tree sampling

5 10 15 20 25 30 35 40 45 50 55 60 65 70 75

E
rr

or
s

Adjusted Computational Time

Gibbs sampling

LBP

Tree sampling

Figure 6.5: Performance comparison on a medium-leak QMR network. All algorithms

obtain the correct marginals (even if LBP and Gibbs have much higher errors than

tree sampling). Tree sampler is clearly the fastest and most robust method here.

Chapter 6. Experimental Results 64

5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95

E
rr

or
s

Adjusted Computational Time

Gibbs sampling

Tree sampling & LBP

5 10 15 20 25 30 35 40 45 50 55 60

E
rr

or
s

Adjusted Computational Time

Tree sampling

LBP

Figure 6.6: Performance comparison on a high-leak QMR graph. On this easy case,

LBP outperforms the MCMC algorithms. The top plot shows that Gibbs performance

is poor compared to the others. The bottom plot demonstrates the superiority of LBP

over tree sampling.

Chapter 6. Experimental Results 65

to take advantage of belief propagation when it helps. On these cases, it outperforms

Gibbs sampling.

6.4 Tree Partitioning Algorithm Results

All reported results count the number of trees in the resulting partition. On each

experiment, we ran the partitioning algorithm 20 times. We provide the mean result

(rounded), along with the best and worst run results.

6.4.1 Square Lattices MRF

Square-lattices MRFs are hard graphs to partition automatically, since they contain

so many loops. We present the partitioning results for MRFs in Table 6.1.

MRF size Queue Ordering Mean Best Worst

5*5 normal 2 2 2

5*5 random 3 2 5

10*10 normal 5 3 7

10*10 random 8 5 10

20*20 normal 26 17 36

20*20 random 25 17 31

50*50 normal 148 105 241

50*50 random 152 127 166

100*100 normal 365 273 639

100*100 random 584 563 624

Table 6.1: Partitioning Algorithm applied to pairwise square-lattices MRF.

Roughly, there are twenty times less trees than the number of vertices5. We can

see that the queue ordering does matter. Choosing the “normal one” (defined in

5This does not mean, however, that the average length of a tree is 20 vertices. On the MRF case,

generally a single tree accounts for more than half of the total vertices in the graph.

Chapter 6. Experimental Results 66

Figure 5.5) has clear benefits compared to a totally random one (except, surprisingly,

in the 20*20 case, but even there their performance is almost equal).

6.4.2 Pairwise Random Graphs

Random Graph size Density Backtrack Mean Best Worst

100 0.1 yes 5 5 6

100 0.1 no 6 5 7

100 0.5 yes 14 14 15

100 0.5 no 14 14 15

1000 0.01 yes 7 6 9

1000 0.01 no 17 10 22

1000 0.25 yes 41 40 42

1000 0.25 no 41 40 42

10000 0.01 yes 22 21 24

10000 0.01 no 31 25 37

Table 6.2: Partitioning Algorithm applied to pairwise random graphs.

Our algorithm provides good results for random graphs. Even with a high density

(0.25), we find a correct partition in 41 trees for a 1000-nodes graph, where each vertex

was in average linked with 250 others. It is interesting to note that for random graphs,

the variance across different runs is much lower than for square-lattices. While for

MRFs there was a difference of 366 trees between the best and worst run for 10000

vertices, here this difference is only 3.

Table 6.2 makes a comparison between the backtrack-enabled algorithm and the

simpler one. It is clear that backtracking is very useful for random graphs with low

density. If the graph has a high density, it is however unable to help. These results

confirm the claims of Section 5.2.6. Backtracking can only help, and never worsens

the results.

Chapter 6. Experimental Results 67

6.4.3 Random Factor Graphs

We created random factor graphs by specifying the number of RVs and the number

of potentials. The density represents the maximal number of RV a potential can be

linked to. We chose the edges randomly.

Number of Variables Number of Potentials Density Mean Best Worst

50 30 3 6 6 6

50 30 5 14 13 14

250 100 4 22 19 27

250 100 8 42 41 43

1000 700 4 163 150 179

1000 1500 4 139 125 150

4000 1000 5 261 261 262

4000 1000 10 1073 1060 1075

100 75 100 100 100 100

100 75 50 96 95 96

1000 100 100 865 853 874

Table 6.3: Partitioning Algorithm applied to random factor graphs.

As expected from the example of Figure 5.13, the factor graph case is harder to

partition. For a given number of random variables, the pairwise case produces generally

less trees.

For factor graph with low densities, the algorithm produces partitions with rela-

tively few trees. This is encouraging. Increasing the number of links does not always

increase the number of trees, since it also provides more “escape routes” for trapped

groups of vertices. By raising the number of potentials from 700 to 1500 with 1000

RVs, Table 6.3 shows a decrease in the number of trees found.

In cases of high density, it is impossible to obtain good partitions. The partitions

for the last three lines of Table 6.3 contain trees of only one RV. Tree sampling is

useless in such situations.

From all its branches there

spilled a golden dew upon the

barren earth.

The Silmarillion J.R.R.

Tolkien

Chapter 7

Conclusion

This thesis extended the tree sampling framework [6] to factor graphs (Chapter 4) and,

with automatic partitioning algorithms (Chapter 5), to arbitrary pairwise graphs.

Tree sampling is a hybrid algorithm, using elements of Monte Carlo simulation and

Belief Propagation. The experimental results of Chapter 6 showed this heritage. Tree

sampling is able to benefit from BP to outperform the simple Gibbs sampler in many

test cases, albeit not all. But, contrary to LBP, tree sampling never failed to converge

in our experiments.

Many aspects of tree sampling remain to be investigated. First, using multiple tree

partitions (a mixture of MCMC kernels) could dramatically improve the performance

of tree sampling.

Adapting tree sampling to the continuous case is a hard challenge. We tried a

variant of tree sampling, called Sequential Monte Carlo (SMC) tree sampling, on a

MRF with a non-parametric model. Instead of using BP to sample from a tree, we

used a SMC technique [8]. The mixing of MCMC and SMC did not work well, and the

results were disappointing. However, tree sampling is probably adaptable to Gaussian

models.

Finally, inference algorithms such as tree sampling are not yet fully understood

from a theoretical point of view. On very large graphs1, Gibbs sampling usually has a

poor performance. Our hope is that tree sampling would scale much better.

1It is hard to conduct experiments on such graphs, as it is impossible to get ground truth.

68

69

Bibliography

[1] C. Andrieu, N. de Freitas, A. Doucet, and M. Jordan. An introduction to MCMC

for machine learning. Machine Learning, 50:5–43, 2003.

[2] József Balogh, Martin Kochol, András Pluhár, and Xingxing Yu. Covering planar

graphs with forests. Journal of Combinatorial Theory, Series B, 94(1):147–158,

2005.

[3] B. Bidyuk and R. Dechter. Cycle-cutset sampling for bayesian networks, 2003.

Sixteenth Canadian Conf. on AI.

[4] C.K. Carter and R. Kohn. On Gibbs sampling for state space models. Biometrika,

81(3):541–553, 1994.

[5] G. Casella and C. P. Robert. Monte Carlo Statistical Methods. Springer, 1999.

[6] Nando de Freitas and Firas Hamze. From Fields to Trees. In Proceedings of the

20th conference on Uncertainty in Artificial Intelligence, pages 243–250. ACM

International Conference Proceeding Series, Vol. 70, 2004.

[7] W. Gilks, S. Richardson, and D. Spiegelhalter. Markov chain Monte Carlo in

practice. Chapman and Hall, 1996.

[8] S. J. Godsill, A. Doucet, and M. West. Monte Carlo Smoothing for Nonlinear

Time Series. Journal of the American Statistical Association, 99(465):156–168,

March 2004.

[9] D. Heckerman. A tutorial on learning with Bayesian networks. Technical report,

Microsoft Research, Redmond, Washington, 1995. Revised June 96.

Bibliography 70

[10] Tommi Jaakkola and Michael I. Jordan. Variational probabilistic inference and

the QMR-DT network. Journal of Artificial Intelligence Research, 10:291–322,

1999.

[11] C. Jensen, A. Kong, and U. Kjaerulff. Blocking Gibbs sampling in very large

probabilistic expert systems. International Journal of Human-Computer Studies,

42:647–666, 1995.

[12] M. Jordan. Probabilistic Graphical Models. To be published.

[13] Kschischang, Frey, and Loeliger. Factor graphs and the sum-product algorithm.

IEEETIT: IEEE Transactions on Information Theory, 47, 2001.

[14] S. Z. Li. Markov Random Field modeling in image analysis. Springer-Verlag,

2001.

[15] N. Metropolis and S. Ulam. The Monte Carlo method. JASA, 44(247):335–341,

1949.

[16] Kevin P. Murphy. The Bayes Net Toolbox for MATLAB. Computing Science and

Statistics, 33, 2001.

[17] Kevin P. Murphy, Yair Weiss, and Michael I. Jordan. Loopy belief propagation

for approximate inference: An empirical study. In Proceedings of Uncertainty in

AI, pages 467–475, 1999.

[18] C.St.J.A. Nash-Williams. Edge-disjoint spanning-trees of finite graph. J. London

Math. Soc., 36:445–450, 1961.

[19] J. Pearl. Evidential reasoning using stochastic simulation. Artificial Intelligence,

32:245–257, 1987.

[20] L. Tierney. Markov chains for exploring posterior distributions. Annals of Statis-

tics, 4(22):1701–1762, 1994.

Bibliography 71

[21] D. J. Wilkinson and S. K. H. Yeung. Conditional simulation from highly struc-

tured gaussian systems, with application to blocking-MCMC for the Bayesian

analysis of very large linear models. Statistics and Computing, 12(3):287–300,

2002.

[22] J. S. Yedidia, W. T. Freeman, and Y. Weiss. Understanding belief propagation

and its generalizations. Exploring Artificial Intelligence in the New Millennium,

pages 239–269, 2003.

