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Abstract

In this project I explore sequential auctions with potential en-
try in later rounds. By considering a simple model, it can
be shown that the main particularity of the equilibria taking
place is that they try to conceal precious information to the
new entrant. This project’s main result consists in the proof
of a somewhat stronger impossibility result for the equilibria
of the considered model. A review of the various strategies
available to bidders, depending on the assumptions made, is
then provided.

Introduction
Rules for traditionnal auctions usually only had to deal with
a fixed set of potential bidders, since these auctions were set
up in one common place where all buyers and sellers were
gathered. Some of these auctionning events offered multiple
occurences of the same (or very similar) good, and thus,
some satisfied bidders on early rounds would not attend
the remaining rounds, or some late potential buyers could
have missed the first few initial ones and still participate
in the last. However, even if in these traditionnal auctions
the number of bidders could vary from round to round, the
set of bidders informed of all the bids that took place was
constant or could only decrease in size. Usually, a new
(late) arrivant didn’t have any way to know what happened
when he wasn’t there yet. The history and records of all the
auctions and bids submitted were completely unknown to
him as he was considering his strategy for participating in
the remaining auctions.

In today’s online auctions environments, things have
changed dramatically. The ever increasing popularity of
eBay or other online auctionning sites attract thousands
of new potential buyers every day. And these buyers can
instantly get some information about previously held auc-
tions, simply by looking at the currently running auctions
and observing the prices. The sheer number of auctions for
identical or very similar items allows newcomers to first
have a look at the system, observe common prices (bids)
submitted, and then, if they like what they see, they can
decide to participate in future auctions of the goods they
are interested in. On the other hand, if they are somehow
disappointed in their initial review of the system, they may

decide not to participate in auctions at that site.

It makes sense to model this kind of behavior, which
seems extremely common. This project will thus examine,
from a very theoretical point of view, sequential auctions
with entry deterrence. This means we will consider several
rounds of auctions of the same good, but some of the bidders
are allowed to participate only after a certain number of
initial rounds (but they get to observe the results of the bids
submitted in the initial rounds). This is a reasonable choice
to model the behavior of “newcomers” into the system,
who may elect to first have a look at how things are going,
then participate in later auctions. In this project, we will
focus our attention on the strategies available to the initial
bidders: they can be seen as more experienced users (or
professional bidders) that have to define a best strategy
in order to maximize their utilities against this perpetual
flow of potential newcomers. It turns out that in order to
achieve optimality, they have to resort to apparently strange
(at first glance) bidding strategies designed to hide their
true valuations; but this behavior is conditionnal on an
assumption of perfect rationality for the potential entrants,
which doesn’t seem very realistic in practice.

This project report is structured as follows. The next
section will introduce the formalism of the model we will
be considering throughout the paper. We will discuss how
realistic this model is, and how some of the assumptions we
are making can be plausibly explained by some observable
behavior on auction sites like eBay. The model we use is
in fact the one considered by Andrei Bremzen in his recent
paper on sequential auctions (Brezmen 2003). His main
results will thus be recalled briefly, and a section will be
devoted to an extension of his results: we will prove the
equilibrium Bremzen constructed is the only possible one,
given certain conditions. This is the most important result
in this project. The last section will consist in a discussion
of online bidding strategies, specifically related to the
theoretical setting we presented. There are in the literature
several papers discussing that topic (see for exemple (Porter
& Shoham 2003), or (Easley & Tenorio 2001)). However,
none of them specifically considers the possibility of
modelling online bidding behavior with entry deterrence,
and this project report hopes to give a presentation of what



are the best strategies (and consequent equilibria), if we are
making these assumptions of entry deterrence.

Setting and Model
Type of auction
We will be considering an ascending price auction in
which there are two rounds, resolved sequentially. An
ascending price auction is conceptually equivalent to a
second price auction with sealed bids; the price paid by the
winner is determined by the price at which the last other
remaining bidder dropped out. Thus in effect, the drop out
price selected by each bidder is (almost) equivalent to a
pre-submitted sealed bid; and the winner ends up paying
the second highest bid, like in a second price auction.
See (Vickrey 1962) for more details about this “ratchet”
strategy, and (Klemperer 1999) for a general discussion
of the various common types of auctions. The advantage
of sealed bids is that it allows an immediate (or very fast)
resolution of the auction, because it doesn’t require any
communication between the seller and the bidders except
for the initial sealed bids. In practice, sealed-bid auctions
are used at eBay and other online marketplaces. However,
because in eBay the auction lasts for a certain amount of
time, bidders can revise their initial bids, and eventually
resubmit a higher bid. Normally, there shouldn’t be any
incentive to revise a bid, since the first bid should only
be deducted from the valuation a particular buyer has of
a certain good, and this shouldn’t change over time. But
in fact, there may be advantages in doing so, because it
can induce some signaling. This issue is tackled in (Easley
& Tenorio 2001): bidders using jump bids as signaling
bids can achieve higher expected profits. We will not
be considering this issue here, and will always treat our
auction as being strictly equivalent to a sealed-bid second
price auction (without any opportunity to change initially
submitted bids within the same round of auction).

On spying
Note that in this case of second price auction, if we were
to consider a single auction, cheating would be possible
for the seller (if he somehow dishonestly spied on the bids
submitted by the various bidders), but not for the bidders: in
(Porter & Shoham 2003), a paper dealing with the issue of
cheating as a consequence to spying on others, the authors
acknowledge this fact and thus examine the cheating
opportunities for bidders in a first price sealed auction
(which is not incentive compatible). However, with several
sequential auctions it is interesting for a bidder to spy on
the other bidders, even with a second price auction. This
is essentially due to the fact that in our sequential auction
setting, a second price auction is no longer an incentive
compatible mechanism. Effects of cheating and spying
could consequently be an interesting thing to examine in the
future; for this project we will assume our marketplace is
secure and doesn’t allow anyone to spy on other bids before
submitting its own. All information is disclosed through the

normal auction mechanism, when the auction resolves.

Number of bidders
Let’s get back to the description of our model. 3 bidders
will be allowed to participate in the auction. This small
number is enough to give a theoretical insight on the issues
at stake and how they affect each bidder’s strategy. The
two first bidders are allowed to participate in both rounds;
however the third one is a “newcomer” to the system,
and can only participate in the second round. He gets
to observe the results of the first round: so he observes
what was the sealed-bid of the loser of the first round (on
eBay, that’s what he would also observe: the winning bid
is the amount of the reserve price for the loser). All three
participants have their valuation for the good drawn from an
uniform distribution between 0 and 1 ( this allows for easier
computations as the valuations are already normalized like
probabilities!), and are risk neutral. In each of the two
rounds, one item of the good is sold. Bidders are only
interested in at most one unit of the good, so the winner of
the first round will quit and won’t participate in the second
round. The loser of the first round and Player 3 will thus bid
against each other in the last round.

Tie-breaking rule and entry cost
As we will see, ties will play a crucial role in our equi-
librium, so we need a tie-breaking rule. We choose the
simplest one: if a tie occurs between two bids, the good
will be sold randomly (with probability 1/2) to one of the
players. Finally, Player 3 incurs an entry cost for entering
the auction in the second round. This cost c > 0 will in fact
never be greater than 1/2, or else Player 3 would never enter
(see (Brezmen 2003) for details). Sometimes this entry cost
will prohibit Player 3 from entering; in this case the loser of
the first round can get the item for free (pays 0). In a more
realistic setting, the loser would actually pay the reserve
price of the seller for the item (and bids wouldn’t start at 0
either but at this reserve price). But from a mathematical
perspective, the two situations are exactly equivalent, and
it is easier to consider that the “best possible result” for the
buyer is to pay 0, so we will adopt that notation.

Empirical justification of the model
It is interesting to discuss why, in a realistic online mar-
ketplace, player 3 would incur an entering cost and not the
two first bidders. After all, participation in eBay is free for
every potential bidder. However, if player 3 is indeed new
to the system, this assumption makes sense. There are in
fact actual costs for participating in online auctions: you
would have to buy a computer or get access to one, pay the
connection fees, then register for an account at eBay, learn
how the system works, etc... All of this takes time and/or
money and thus can be considered as a cost for the potential
entrant (plus, the fear of paying money to a dishonest
seller and never getting back anything in return prevents



many people from entering online auctions - this can also be
modelled in the cost). This is especially true for newcomers;
experienced users already have made the investment of
learning how the sytem works, and thus incur very little
costs at each new auction in which they participate. But for
a person moderately interested in online auctions, that is just
having a look at an eBay web page describing an auction, to
see “if all this online auctions frenzy can be truly worth it”,
the entry cost can be very real. The decision to take the time
and effort to actually enter “a next auction” will very often
depend on the initial impression an user gets of the system,
and that initial impression is essentially conditionned on the
prices observed, like in our model. This entry cost is all the
more realistic as the relative price for the object is small,
because the entry cost in our setting actually represents a
fraction of the item cost. Thus it is unrealistic to consider
an entry cost of 0.4 for a $100, 000 car (this would translate
to a cost of $40, 000); but for a $10 or even a $100 item, our
model is quite plausible.

A step function equilibrium
In this section I will recall briefly the main result presented
by Bremzen. For the details of all the proofs, refer to (Brez-
men 2003). He constructed an equilibrium for the three bid-
ders in the previously described setting. Such an equilibrium
consists of:

• a strategy that the two first players will follow in the first
round,

• an entry decision for the third player (conditionned, of
course, on the observed result of the first round),

• and finally, a strategy followed by the two bidders on the
last round, if player 3 enters.

It should be noted that bidding strategies for the two
first players on the first round have to be symmetric (thus
we only have to define one strategy), due to the inherent
symmetry of our setting. Similarly, the bidding strategies
for the second round, if player 3 enters, are symmetric, and
in fact are trivial to define, because we are dealing with a
simple second price auction (with two players). It is then
well known (see (Shoham 2003)) that the optimal strategy
is to bid their respective true valuations.

The equilibrium described by Bremzen results, for the
initial player strategy, in a submitted bid that is a step
function of the valuation. More precisely, up to a certain
valuation vlim, the optimal choice is to bid 0; if the valua-
tion is greater than vlim, then the player should bid a fixed
amount b∗. This strategy is presented in Figure 1.

This, combined with a decision entry for the third player,
defines a Nash-Equilibrium of our auction, given that c >
clim ≈ 0.1467 and c < 1

2 . The entry strategy for Player 3
with valuation v, that results in an equilibrium, is the follow-
ing:

• if the observed price is b∗, enter if v > vlim +
√

2c(1 − vlim);

vlim 

b* = vlim (2-vlim)(1-c-vlim/2)/(1-vlim)

bid submitted

0

1

 

1

valuation

Figure 1: An equilibrium strategy as a 2 step function

• if the observed price is 0, enter if v > vlim

2 + c;

• otherwise, enter if v > c.

It should be noted, as pointed out by Bremzen, that there
is a degree of freedom in this equilibrium, in the choice of
vlim. Not all values are of course possible for vlim, but
there is an interval of possible values. b∗, on the contrary,
is binded to vlim and c by the following formula:

b∗ =
vlim · (2 − vlim) · (1 − c − vlim/2)

1 − vlim

So there is no degree of freedom here; actually, b∗ is
chosen so that Player 1 or 2 is indifferent between bidding
0 or b∗, if he has value vlim. One important remark is that
if Player 3 observes price b∗, he may correctly deduce the
value chosen for vlim. However, if he only observes price
0, he can’t get the value for vlim, which makes his entry
decision (enter if v > vlim

2 + c) problematic. Similarly,
the two first players have to choose the same exact vlim

in order to achieve an equilibrium. So, even if this set of
strategies do define a Nash-Equilibrium, it seems rather
hard to achieve in practice. We will discuss these problems
in the last section.

Intuitively, this step function equilibrium occurs as a
consequence of the willingness from the first bidders to
hide their correct valuations to the new entrant. If the new
entrant is able to determine exactly the valuation of the
loser, he will enter as soon as his own valuation is greater
than the loser’s valuation added to his entry cost. If there
is uncertainty about that valuation, he will enter if his
own valuation is greater than the expectation of the loser’s
valuation and his entry cost. It is thus in the initial bidders
interest to keep the entrant ignorant of their exact valuations.

Equilibria for other values of c can also be found. If c = 0,
it is easy to understand that it is in Player 3 best interest to



enter all the time, and this leads to a drop out strategy for the
first round of b(v) = v − v2

2 . If c > 1/2, we already said
earlier that Player 3 will never enter, thus the equilibrium is
for both initial players to always bid 0. If 0 < c < cmin,
then a step function equilibrium is also possible. In this case
of small entry costs, there are no longer only two steps, but k
ones. k will go up when c goes to 0, but for a given c, it can
be proven (again, refer to (Brezmen 2003) for details) that a
step function with a finite number of steps will constitute a
Nash-Equilibrium for our problem.

The only possible equilibrium strategies are
step functions

This section presents the main result of the project: we
will show that step functions, as described in the previous
paragraphs, are the only equilibria existing for our problem.
This was a question remaining to be answered, according
to Bremzen’s conclusions. He showed that for any c > 0,
there existed no equilibrium bidding function b(v), for the
initial round, that was strictly monotone in valuation. I will
go one step further and claim that:

Lemma: For a sufficiently high entry cost c > c∗, there
exists no equilibrium bidding function b(v) that is strictly
monotone in valuation on any interval.

Proof: Let’s assume the contrary, and let [x1, x2] be
an interval in which b(v) is strictly monotone. Then it
is clear that on that interval, player 3 will be able to
correctly deduce the valuation of the loser (because there
is a bijection on that interval between the bid and the valu-
ation). He will enter if his own valuation is greater than v+c.

When player 1 decides the amount he is going to place
on his sealed bid, he assumes (as part of the equilibrium)
than player 2 is following b(v). If his own valuation is on
the interval [x1, x2], he may consider deviating by a small
amount, and claim he is of type vfalse which is still in the
interval [x1, x2]. His expected payoff will then be

Payoff(v, vfalse) = W +

∫ vfalse

x1

(v − b(x)) · dx

+ v(1 − vfalse)(vfalse + c)

Here, W represents a constant payoff (not depending on
vfalse) that player 1 gets if player 2 is going to bid lower
than the interval and consequently, player 1 is going to
win the item on the first round. The integral represents the
payoff if player 2 is going to bid on the [x1, x2] interval but
lower than player 1 (thus lower than vfalse). Finally the
last term represents the payoff if player 2 bids higher than
player 1. Then player 1 goes on to the next round (with
probability (1 − vfalse)), with player 3 believing he has
valuation vfalse. If we make vfalse sufficiently close to v,
so that |v − vfalse| < c, then player 1 always lose if player
3 enters, and thus he receives something by going to the
second round only if player 3 does not enter (probability

(vfalse + c)), and in this case his payoff is v.

Payoff(v, vfalse) must reach its maximum at
vfalse = v since it is an equilibrium function (and
thus small deviations won’t bring in more profits). Thus by
differentiating Payoff(v, vfalse) in respect to vfalse we
obtain the condition:

0 = v − b(v) − v(v + c) + v(1 − v)

b(v) = 2v − vc − 2v2

To be monotone on the interval [x1, x2], we again differ-
entiate one time and obtain the condition:

v <
2 − c

4

Thus x2 has to be lower than 2−c
4 . We proved than b(v)

can’t be strictly monotone on the interval [ 2−c
4 ,1]. Still,

there could be an arbitrary number of intervals contained in
[0, 2−c

4 ] where b(v) could be strictly monotone and of the
form (this is a requirement) b(v) = 2v − vc − 2v2. We now
have to prove that this is impossible.

Let’s pick the interval, where b(v) is monotone, closest
to 2−c

4 . This interval is [x1, x2] with x2 < 2−c
4 . By

construction, we know that after x2, b(v) is a step function
(because it can be strictly monotone nowhere). Let’s assume
it has only a single step after x2, with a bidding price of b∗;
given that c > c∗, we can always assume that. Since the
number of possible steps is linked to the value of c, for a
sufficiently high c, we can be sure that we have at most two
steps (see (Brezmen 2003) for a proof of that). The single
step assumption after x2 is not crucial here and is only done
to simplify derivations. I am confident that a more complete
proof could examine the case of small entry costs c and
conclude to the same result (thus we would prove that for
any c, there exists no equilibrium bidding function b(v) that
is strictly monotone in valuation on any interval).

In order to construct an equilibrium, the initial bidder
(player 1) with valuation x2 must be indifferent between bid-
ding 2 · x2 − x2 · c − 2 · x2

2 (monotone part) and bidding b∗

(step part). So:

Payoffmonotone(x2) = Payoffstep(x2)

W + v(1 − x2)(x2 + c) = W +
(x2 − b∗)(1 − x2)

2

+
(1 − x2) · α

2

W is a constant and represents (in both cases) the payoff
if we win the first round because player 2 bids lower than
player 1. ( (x2−b∗)(1−x2)

2 ) is the case when both initial play-

ers are tied at the step, and ( (1−x2)α
2 ) represents the payoff

if player 1 goes to the second round (α is the probability of
player 3 entering: if player 3 enters, player 1 automatically



loses since he is at the beginning of the step with a valuation
of x2). After derivations we obtain:

b∗ = (1 + α) · x2 − 2x2 · c − 2 · x2
2

This b∗ has to be more than the price b(x2) corresponding
to the monotone part. Thus:

(1 + α) · x2 − 2x2 · c − 2 · x2
2 ≥ 2x2 − x2 · c − 2x2

2

This gives us:

c ≤ α − 1

which is impossible, given that c > 0 and α ≤ 1. Thus
over the interval [x1, x2] we can’t have a monotone b(v),
since it is impossible for such an equilibrium b(v) to “link”
to the next step. The rest of the proof is straightforward:
since we have proved that the monotone interval which
was closest to the steps defining the end of our equilibrium
strategy can’t exist, obviously we can consider the second
next closest interval, which becomes the closest since
we have just proven the previous one cannot exist. By
recursion, we conclude that no interval where b(v) is strictly
monotone can exist. Thus our lemma.

Our lemma proves than equilibria of the type described
in Figure 2 can’t exist (which was something remaining to
be answered, according to Bremzen). Since an equilibrium
bidding strategy can’t be strictly monotone anywhere,
obviously the only possible equilibria are step functions,
that have a finite number of discontinuities and are constant
over intervals.

monotone

part

vlim 

step part

bid submitted

0

1

 

1

valuation

Figure 2: An impossible equilibrium strategy

Discussion of online bidding strategies for the
entry deterrence model

It is clear that following an optimal strategy can signifi-
cantly affect the profits of the initial bidders, as shows the

following example.

Example. Let’s consider an entry cost of c = 1/3. We
are interested in computing the average payoff of an initial
bidder. By following the simple “honest” strategy of bidding
your valuation for the first round, you get an average payoff
of 0.3 (if your valuation is drawn uniformly from 0 to 1). By
following the equilibrium strategy, with a vlim = 1/3, the
average payoff is 0.384, more than 25% more.

On rationality
This may suggest than experienced buyers at online mar-
ketplaces should try to follow this equilibrium strategy,
actually “teaming up” with other established experienced
users in order to limitate the entrance of newcomers. But
there is a catch in this analysis. The equilibrium discussed
is a Nash-Equilibrium, which means that if all bidders are
perfectly rational and aware than the others are playing this
strategy, then it is in their best interest to play in this way.
However, newcomers to the system cannot reasonably be
considered as rational: they are very unlikely to perform
this analysis and play in consequence. For exemple, they
are likely, if they observe very low prices in an online
auction, to try to enter subsequent auctions, because they
think it will be profitable. But in fact, they may not realize
that low prices are due to the fact that initial bidders want to
hide their correct valuations; and these newcomers may be
facing a tougher opposition than they expect on the auctions
they enter, after having paid the entry cost. Like we also
pointed out earlier, there is also a degree of freedom in the
choice of vlim, which may result in a lack of coordination
for the initial bidders, and additional uncertainty for the
third player. This will most probably lead to a loss of profit,
although it would have to be investigated.

Thus, it would be interesting not to focus on the Nash-
Equilibria of the entry deterrence model for auctions, but to
find what is the best strategy for initial bidders, given that
the newcomers will act “irrationally”. After all, we have
just seen that computing the equilibrium is no small task;
realistically, almost nobody can be expected to perform
this kind of pushed analysis. A newcomer can plausibly be
assumed to play always naively, that is, enter if his valuation
is more than the sum of the observed price and the entry cost.

Making that assumption dramatically changes the
equilibrium for the two first players. We are back to a
model where information hidding is not important and
even undesirable. This is because since the newcomer
doesn’t think information hidding is occuring, any “steps”
we may have in our equilibrium function now have an
adverse effect for the initial bidders. The newcomer will
assume initial bidders have the lowest possible valuation
of the step. In these conditions, if an equilibrium exists
(we can’t know for sure that an equilibrium exists, be-
cause we are not dealing with a finite normal form game), it
is probably very different from the ones we presented earlier.



On cooperation
One other interest thing to note is that if initial bidders
cooperate (but don’t follow an equilibrium strategy), they
can achieve impressive profits at the expense of the third
player. A very simple cooperating strategy is to always
bid 0. This gives, with c = 1/3 and against a third player
bidding naively, an average payoff of 0.358, which is
already very good. Against a “rational” third player aware
of the strategy, this gives a payoff of 0.458 ! This illustrates
two facts: a player behaving rationally is actually better for
the initial bidders, because in that case, information hiding
can very easily forbid him from entering and thus leads to
huge profits for the initial bidder. The second fact is that
cooperation between initial players gives better rewards
than following the equilibrium strategies, especially in the
case of rational newcomers. But, this is of course very risky:
initial players will be tempted to cheat on their partner and
bid a very small positive amount, obtaining the maximum
possible average payoff of 0.5, regardless of whether the
newcomer is rational or not . . .

What is worth noting is that in such a case, where initial
bidders would agree to cooperate to keep their profit high
against new comers, their best strategy is not to bid very high
prices in order to discourage potential entrants, but instead
to agree on very low prices for the auctions in which they
are the only ones to participate. This is because our model is
fairly simple and considers only two rounds. If more rounds
were available, it would probably be realistic to assume
that, upon observation of the price of initial auctions, a new
entrant could decide either to never enter, or to enter and
occur the entry cost only once, then be able to participate at
every remaining auction. In that setting, intuition suggests
that initial bidders willing to cooperate would then focus
on an agressive bidding policy, in order to permanently
eliminate potential rivals, since every new entrant would
stay forever in the system without incurring additional costs.

Conclusion
In this project report we have examined a plausible model
for online auctions, based on entry deterrence and described
extensively in (Brezmen 2003). The crucial assumption for
this model is that whenever several auctions of the same
good are available, sequentially, there will be new potential
buyers for the later auctions, but these newcomers incur
an entry cost, reflecting the effort needed to register at the
online marketplace.

We have extended Bremzen’s impossibility result, and
proved that the only possible equilibria (if all bidders are
rational) in this setting are for the submitted bids to be step
functions of the valuations. However, and although the ini-
tial bidders would prefer the potential newcomers to behave
rationally in their entry decision, this would probably not
occur in practice. Thus actual optimal bidding strategies
may not be the ones that theoretical Nash equilibria would
suggest. Also, if initial bidders can agree to a form of

cooperation, they can achieve much higher profits, as is
often the case: in the classic Prisonner’s Dilemna game,
cooperation can lead to better payoffs for both players than
the Nash-Equilibrium strategy.

This project opens the way for a lot of future work. First,
the main proof in this report could probably be extended
to prove a stronger and more general result (withdrawing
the assumption we made on the entry cost c by mean of
precaution). Another very interesting result would consist in
computing an equilibrium for the initial bidders strategies,
given that the new entrant will behave naively. If such
an equilibrium does exist, it is probably on this kind of
equilibrium that experimented or professional bidders on
eBay should rely in order to maximize their profits against
newcomers. It would be interesting to empirically test this.

Finally, the model could be extended in order to better
capture long-term behavior in online marketplaces. Consid-
ering more than 3 players is interesting and already tackled
in (Brezmen 2003). However, a much more complex change
would be to examine the possibility of more than 2 auction-
ning rounds. More generally, sellers and auction-designers
strategies, in sequential auctions with potential entry in later
rounds, could also be considered.
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